Seiichi Kawahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5603382/publications.pdf

Version: 2024-02-01

185 papers 3,080 citations

29 h-index 243296 44 g-index

186 all docs

186 docs citations

186 times ranked 1354 citing authors

#	Article	IF	Citations
1	Observation of Cylinder-Based Microphase-Separated Structures from ABC Star-Shaped Terpolymers Investigated by Electron Computerized Tomography. Macromolecules, 2004, 37, 9941-9946.	2.2	132
2	Crystallization and Strength of Natural Rubber and Synthetic cis-1,4-Polyisoprene. Rubber Chemistry and Technology, 1998, 71, 668-678.	0.6	105
3	Removal of proteins from natural rubber with urea. Polymers for Advanced Technologies, 2004, 15, 181-184.	1.6	94
4	Preparation and characterization of natural rubber dispersed in nano-matrix. Polymer, 2003, 44, 4527-4531.	1.8	84
5	Hyperdeproteinized natural rubber prepared with urea. Journal of Applied Polymer Science, 2004, 93, 555-559.	1.3	80
6	Preparation and Morphology of Ring-Shaped Polystyrene-block-polyisoprenes. Macromolecules, 2003, 36, 3045-3050.	2.2	75
7	Characterization of fatty acids linked to natural rubberâ€"role of linked fatty acids on crystallization of the rubber. Polymer, 2000, 41, 7483-7488.	1.8	70
8	Initiation of rubber biosynthesis in Hevea brasiliensis: characterization of initiating species by structural analysis. Phytochemistry, 1996, 41, 1501-1505.	1.4	67
9	Protein-free natural rubber. Colloid and Polymer Science, 2012, 290, 331-338.	1.0	66
10	Structure and biosynthesis of trans-polyisoprene from Eucommia ulmoides. Phytochemistry, 1997, 45, 75-80.	1.4	62
11	Nano-matrix structure formed by graft-copolymerization of styrene onto natural rubber. European Polymer Journal, 2007, 43, 3208-3214.	2.6	62
12	Characterization of epoxidized natural rubber by 2D NMR spectroscopy. Polymer, 2007, 48, 750-757.	1.8	60
13	Effect of non-rubber components on the mechanical properties of natural rubber. Polymers for Advanced Technologies, 2017, 28, 159-165.	1.6	51
14	Trans-Isofrene Units in Natural Rubber. Rubber Chemistry and Technology, 1994, 67, 159-168.	0.6	49
15	Low temperature degradation and characterization of natural rubber. Polymer Degradation and Stability, 2011, 96, 1989-1995.	2.7	46
16	Effect of Gel on the Green Strength of Natural Rubber. Rubber Chemistry and Technology, 2002, 75, 739-746.	0.6	44
17	Effect of Non-Rubber Components on Storage Hardening and Gel Formation of Natural Rubber During Accelerated Storage under Various Conditions. Rubber Chemistry and Technology, 2003, 76, 1228-1240.	0.6	41
18	Initiation of biosynthesis in cis polyisoprenes. Phytochemistry, 1995, 39, 779-784.	1.4	40

#	Article	IF	Citations
19	Removal of proteins from natural rubber with urea and its application to continuous processes. Journal of Applied Polymer Science, 2008, 107, 2329-2332.	1.3	40
20	Mechanism of graft copolymerization of styrene onto deproteinized natural rubber. Colloid and Polymer Science, 2008, 286, 411-416.	1.0	38
21	FIB-SEM and TEMT Observation of Highly Elastic Rubbery Material with Nanomatrix Structure. Macromolecules, 2008, 41, 4510-4513.	2.2	37
22	Crosslinking junctions of vulcanized natural rubber analyzed by solid-state NMR spectroscopy equipped with field-gradient-magic angle spinning probe. Polymer, 2009, 50, 1626-1631.	1.8	36
23	Morphology and properties of natural rubber with nanomatrix of nonâ€rubber components. Polymers for Advanced Technologies, 2011, 22, 2665-2667.	1.6	36
24	Preparation of thermoplastic elastomer from natural rubber grafted with polystyrene. European Polymer Journal, 2011, 47, 330-337.	2.6	36
25	Depolymerization and ionic conductivity of enzymatically deproteinized natural rubber having epoxy group. European Polymer Journal, 2003, 39, 1707-1712.	2.6	35
26	Compatibility of liquid deproteinized natural rubber having epoxy group (LEDPNR)/poly (<scp>L</scp> â€lactide) blend. Journal of Applied Polymer Science, 2008, 108, 393-399.	1.3	35
27	Metathesis-driven scrambling reactions between polybutadiene or naturally occurring polyisoprene and olefin-containing polyurethane. Polymer, 2015, 78, 145-153.	1.8	34
28	Crystal Nucleation and Growth of Natural Rubber Purified by Deproteinization and Trans-esterification. Polymer Journal, 2004, 36, 361-367.	1.3	33
29	Analysis of Surface Segregation in Blends of Acrylate Copolymer with Fluoro-Copolymer Polymer Journal, 1992, 24, 135-144.	1.3	32
30	Crystallization behavior and strength of natural rubber: Skim rubber, deproteinized natural rubber, and pale crepe. Journal of Applied Polymer Science, 2000, 78, 1510-1516.	1.3	30
31	Thermal degradation of deproteinized natural rubber. Polymer Degradation and Stability, 2018, 156, 144-150.	2.7	28
32	Origin of Characteristic Properties of Natural Rubberâ€"Synergistic Effect of Fatty Acids on Crystallization of cis-1,4-Polyisoprene: I, Saturated and Unsaturated Fatty Acids. Rubber Chemistry and Technology, 1996, 69, 600-607.	0.6	27
33	Ionic conductivity of highly deproteinized natural rubber having various amount of epoxy group mixed with lithium salt. Solid State Ionics, 2006, 177, 3251-3257.	1.3	27
34	Preparation and characterization of proteinâ€free natural rubber. Polymers for Advanced Technologies, 2012, 23, 825-828.	1.6	27
35	Origin of Characteristic Properties of Natural Rubberâ€"Synergistic Effect of Fatty Acids on Crystallization of cis-1,4-Polyisoprene: II, Mixed and Esterified Fatty Acids in Natural Rubber. Rubber Chemistry and Technology, 1996, 69, 608-614.	0.6	26
36	Preparation and characterization of cyclic polystyrene with short poly(2-tert-butylbutadiene) sequences. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1582-1589.	2.4	25

#	Article	IF	CITATIONS
37	Degradation of EPDM seal used for water supplying system. Polymer Degradation and Stability, 2011, 96, 1236-1241.	2.7	24
38	Mechanical properties and cross-linking structure of cross-linked natural rubber. Polymer Journal, 2012, 44, 772-777.	1.3	24
39	Natural rubber with nanomatrix of non-rubber components observed by focused ion beam-scanning electron microscopy. Colloid and Polymer Science, 2015, 293, 135-141.	1.0	24
40	Quantitative NEXAFS and solid-state NMR studies of sp 3 $/$ (sp 2 + sp 3) ratio in the hydrogenated DLC films. Diamond and Related Materials, 2017, 73, 232-240.	1.8	24
41	Miscibility and LCST Behavior of Polyisoprene/Poly(cis-butadiene-co-1,2-vinylbutadiene) Blends. Polymer Journal, 1989, 21, 221-229.	1.3	23
42	Origin of Characteristic Properties of Natural Rubberâ€"Effect of Fatty Acids on Crystallization of cis-1,4-Polyisoprene. Rubber Chemistry and Technology, 1998, 71, 70-75.	0.6	23
43	Composition dependence of nanophaseâ€separated structures formed by starâ€shaped terpolymers of the A _{1.0} B _{1.0} C _{<i>X</i>} type. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2277-2283.	2.4	23
44	Preparation and Morphology of Model Graft Copolymers of the A3B2 Type with Different Graft Junction Points. Polymer Journal, 2001, 33, 732.	1.3	23
45	lonic conductivity of highly deproteinized natural rubber having epoxy group mixed with alkali metal salts. Solid State Ionics, 2004, 168, 131-136.	1.3	22
46	Analysis of damage in commercial natural rubber through NMR spectroscopy. Polymer Degradation and Stability, 2016, 123, 155-161.	2.7	22
47	Preparation and characterization of vulcanized natural rubber with high stereoregularity. Polymer, 2021, 235, 124271.	1.8	22
48	Crystallization Behavior and Strength of Natural Rubber Isolated from Different Hevea Clone. Rubber Chemistry and Technology, 2000, 73, 39-46.	0.6	21
49	Controlling the size of silica nanoparticles in filler nanomatrix structure of natural rubber. Polymer, 2020, 195, 122444.	1.8	21
50	Preparation of polymer electrolyte membrane with nanomatrix channel through sulfonation of natural rubber grafted with polystyrene. Solid State Ionics, 2014, 268, 191-197.	1.3	20
51	Visible light responsive vanadium-substituted hydroxyapatite photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 311, 30-34.	2.0	20
52	Thermal Properties and Crystallization Behavior of Highly Deproteinized Natural Rubber. Rubber Chemistry and Technology, 1999, 72, 174-180.	0.6	19
53	The Mechanical Properties of Vulcanized Deproteinized Natural Rubber. Energy Procedia, 2013, 34, 728-733.	1.8	19
54	Preparation and properties of natural rubber with filler nanomatrix structure. Colloid and Polymer Science, 2015, 293, 2249-2256.	1.0	19

#	Article	IF	CITATIONS
55	Highly enhanced mechanical properties in natural rubber prepared with a nanodiamond nanomatrix structure. Polymer, 2017, 126, 40-47.	1.8	19
56	Effect of naturally occurring crosslinking junctions on green strength of natural rubber. Polymers for Advanced Technologies, 2017, 28, 303-311.	1.6	19
57	Miscibility and pressure-sensitive adhesive properties of poly(vinylethylene-co-1,4-butadiene)/terpene resin blends. Polymer, 1991, 32, 1681-1687.	1.8	18
58	Characterization of the Large and Small Rubber Particles in Fresh Hevea Latex. Rubber Chemistry and Technology, 2002, 75, 179-185.	0.6	18
59	Effect of gel on crystallization behavior of natural rubber after accelerated storage hardening test. Journal of Applied Polymer Science, 2007, 106, 455-461.	1.3	18
60	Preparation and characterization of natural rubber with soft nanomatrix structure. Colloid and Polymer Science, 2012, 290, 1457-1462.	1.0	18
61	Molecular weight distribution of polyisoprene from Lactarius volemus. Phytochemistry, 1998, 48, 781-786.	1.4	17
62	A Novel Method for 13C-NMR Spectroscopy of Polymer in Emulsion: Quantitative Analysis of Microstructure of Crosslinked Polybutadiene in Latex. Rubber Chemistry and Technology, 1999, 72, 844-853.	0.6	17
63	Effect of fatty acids on the strain-induced crystallization of natural rubber detected by tear energy measurements. Journal of Applied Polymer Science, 2005, 98, 613-619.	1.3	17
64	Preparation and characterization of poly(stearyl methacrylate) grafted natural rubber in latex stage. Polymer, 2016, 88, 43-51.	1.8	17
65	Quantitative analysis of crosslinking junctions of vulcanized natural rubber through rubber-state NMR spectroscopy. Polymer Testing, 2021, 96, 107130.	2.3	17
66	High-Resolution Latex State 13C-NMR Spectroscopy: Part II. Effect of Particle Size and Temperature. Rubber Chemistry and Technology, 2001, 74, 295-302.	0.6	16
67	Novel Characterization of Filler Network in Rubber Materials Using Differential Dynamic Modulus in Large Compression and Recovery. E-Journal of Soft Materials, 2007, 3, 14-20.	2.0	16
68	Hydrogenation of natural rubber having epoxy group. Colloid and Polymer Science, 2008, 286, 993-998.	1.0	15
69	Nanodiamond Glass with Rubber Bond in Natural Rubber. Advanced Functional Materials, 2020, 30, 1909791.	7.8	15
70	Organic–inorganic nanomatrix structure and properties of related naturally occurring rubbery macromolecules. Polymer, 2014, 55, 5024-5027.	1.8	14
71	Synthetic Rubber with the Tensile Strength of Natural Rubber. ACS Applied Polymer Materials, 2022, 4, 2323-2328.	2.0	14
72	UCST phase behavior and the miscibility valley in blends of poly(vinyl ethylene-co-1,4-butadiene) and hydrogenated terpene resin. Macromolecules, 1993, 26, 2428-2432.	2.2	13

#	Article	IF	CITATIONS
73	Plasticization and crystallization of cis-1,4 polyisoprene mixed with methyl linolate. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 753-758.	2.4	13
74	Preparation of Poly(1,1-dimethyl silabutane) by Anionic Polymerization and Its Crystallization. Macromolecules, 2004, 37, 315-321.	2,2	13
75	Preparation of carbonated natural rubber. Journal of Polymer Science Part A, 2006, 44, 1561-1567.	2.5	13
76	Thermal Reversibility in Liquid-Liquid Phase Transition in Poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 To	d (ethylene 1.3	-co-1,4-butac
77	Stem Length and Stem Length Distribution of Chain-Folded Lamellar Crystal Grown from Dilute Solution of cis-1,4-Polyisoprene by Ozonolysis-GPC Measurements. Rubber Chemistry and Technology, 1998, 71, 277-284.	0.6	12
78	Preparation of Functionalized Low Molecular Weight Natural Rubber Latex Using Solid Nanometric TiO3 Film as a Photocatalyst. Rubber Chemistry and Technology, 2005, 78, 597-605.	0.6	12
79	Quantitative analysis for reaction between epoxidized natural rubber and poly (<scp>L</scp> â€lactide) through ¹ Hâ€NMR spectroscopy. Journal of Applied Polymer Science, 2010, 115, 3598-3604.	1.3	12
80	NANOMATRIX STRUCTURE FORMED BY GRAFT COPOLYMERIZATION OF STYRENE ONTO FRESH NATURAL RUBBER. Rubber Chemistry and Technology, 2015, 88, 117-124.	0.6	12
81	Ozone degradation of vulcanized isoprene rubber as a function of humidity. Polymer Degradation and Stability, 2017, 142, 209-216.	2.7	12
82	Preparation of hydrogenated natural rubber with nanomatrix structure. Polymers for Advanced Technologies, 2020, 31, 86-93.	1.6	12
83	Nanomatrix Channel for Ionic Molecular Transportation. Macromolecules, 2009, 42, 8557-8560.	2.2	11
84	Distribution of Nanodiamond Inside the Nanomatrix in Natural Rubber. Langmuir, 2018, 34, 6861-6868.	1.6	11
85	High-Resolution Latex-State 13C-NMR Spectroscopy for Natural Rubber Vulcanizates. Rubber Chemistry and Technology, 2007, 80, 751-761.	0.6	10
86	Nonlinear Viscoelastic Properties and Change in Entanglement Structure of Linear Polymers 2. Double-step Large Shearing Deformations at Moderately Long Time-scale. Nihon Reoroji Gakkaishi, 2003, 31, 201-206.	0.2	10
87	Lower Critical Solution Temperature Phase Behavior of Natural Rubber/Polybutadiene Blend. Polymer Journal, 2002, 34, 1-8.	1.3	9
88	Morphology and Crystallization Behavior of Lightly Crosslinked Natural Rubber in Blend. Rubber Chemistry and Technology, 2003, 76, 1164-1176.	0.6	9
89	Structural characterization of vulcanized natural rubber by latex state13C NMR spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1003-1009.	2.4	9
90	Photoreactive nanomatrix structure formed by graftâ€copolymerization of 1,9â€nonandiol dimethacrylate onto natural rubber. Journal of Polymer Science Part A, 2010, 48, 2418-2424.	2.5	9

#	Article	IF	CITATIONS
91	Analysis of the sequence distribution of 1,2 units in polybutadiene by an ozonolysis-GPC method. Macromolecules, 1993, 26, 5253-5255.	2.2	8
92	Negative excess volume of mixing in polybutadiene/polyisoprene blends. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 15-20.	2.4	8
93	Effects of Nonrubber Components on the Crystallization Behavior of Natural Rubber. Journal of Macromolecular Science - Physics, 2003, 42, 761-771.	0.4	8
94	Structural characterization of sulfur vulcanized deproteinized natural rubber by solid-state13C NMR spectroscopy. Journal of Applied Polymer Science, 2006, 100, 1875-1880.	1.3	8
95	Filler Effects on Temperature Dependence of Viscoelastic Properties of Filled Rubbers. E-Journal of Soft Materials, 2007, 3, 41-48.	2.0	8
96	Polymer electrolyte membrane with nanomatrix channel prepared by sulfonation of natural rubber grafted with polystyrene. Journal of Applied Polymer Science, 2011, 122, 2403-2414.	1.3	8
97	Oxygen Barrier Properties of New Thermoplastic Natural Rubber Nanocomposites. Polymer-Plastics Technology and Engineering, 2011, 50, 1564-1569.	1.9	8
98	Preparation and characterization of hydrogenated natural rubber with hydroxyl groups. Polymers for Advanced Technologies, 2015, 26, 1504-1511.	1.6	8
99	Formation of organic–inorganic nanomatrix structure with nanosilica networks and its effect on properties of rubber. Polymer, 2016, 102, 106-111.	1.8	8
100	Characterization of ozone-degraded composite of crosslinked polydimethylsiloxane with silica in water. Polymer Degradation and Stability, 2016, 128, 193-199.	2.7	8
101	Characterization of brominated natural rubber by solution-state 2D NMR spectroscopy. Reactive and Functional Polymers, 2017, 113, 6-12.	2.0	8
102	Factors influencing green strength of commercial natural rubber. Green Processing and Synthesis, 2018, 7, 399-403.	1.3	8
103	Entropic and Energetic Elasticities of Natural Rubber with a Nanomatrix Structure. Langmuir, 2020, 36, 11341-11348.	1.6	8
104	Estimation of Critical Surface Tension and Interfacial Interaction of Poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf	50,222 Td	(ethylene-co
105	Volume Contraction on Mixing in Poly(vinyl ethylene-co-1,4-butadiene)/Polyisoprene Blends. Polymer Journal, 1991, 23, 7-14.	1.3	7
106	Field emission scanning electron microscopy combined with focused ion beam for rubbery material with nano-matrix structure. Journal of Physics: Conference Series, 2009, 184, 012027.	0.3	7
107	Structure of Natural Rubber. Nippon Gomu Kyokaishi, 2009, 82, 417-423.	0.0	7
108	Controlling the Performance of Filled Rubbers. Nihon Reoroji Gakkaishi, 2014, 42, 79-88.	0.2	7

#	Article	IF	CITATIONS
109	Preparation and graftâ \in opolymerization of hydrogenated natural rubber in latex stage. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
110	Preparation and properties of phenylâ€modified natural rubber. Polymers for Advanced Technologies, 2015, 26, 546-554.	1.6	7
111	Modification of Vietnam Natural Rubber via Graft Copolymerization with Styrene. Journal of the Brazilian Chemical Society, $0, \dots$	0.6	7
112	ATRP-ARGET of a Styrene Monomer onto Modified Natural Rubber Latex as an Initiator. Langmuir, 2021, 37, 6151-6157.	1.6	7
113	Preparation and properties of colloidal silica-filled natural rubber grafted with poly(methyl) Tj ETQq1 1 0.784314 r	gBT /Overl	ock 10 Tf 5
114	Adhesive Property and Phase Separation of Poly(vinyl ethylene-co-1,4-butadiene) with Rosin Resin Mixtures. Polymer Journal, 1991, 23, 47-54.	1.3	6
115	Solution-grown crystal of cis-1,4 polyisoprene. Polymer, 1997, 38, 4113-4116.	1.8	6
116	Crystallization of cis- and trans-1,4-Polyisoprene Dispersed in SBR. Rubber Chemistry and Technology, 1998, 71, 837-845.	0.6	6
117	Quantitative Analysis of Sequence Length Distribution of 1,2 Units in Polybutadienes by Ozonolysisâ^'GPC Method. Macromolecules, 1999, 32, 5994-5997.	2.2	6
118	Photoreactive particle prepared from natural rubber and 1,9â€nonandioldimethacrylate. Journal of Polymer Science Part A, 2009, 47, 4111-4118.	2.5	6
119	Degradation profiles in aged EPDM water seals using focused ion beam-scanning electron microscopy. Polymer Degradation and Stability, 2013, 98, 2489-2496.	2.7	6
120	Influence of Reaction Conditions on the Properties of Nano-matrix Structure Formed by Graft-Copolymerization of Acrylonitrile onto Natural Rubber. Advanced Materials Research, 0, 844, 365-368.	0.3	6
121	Formation of an in situ nanosilica nanomatrix via graft copolymerization of vinyltriethoxysilane onto natural rubber. Polymers for Advanced Technologies, 2020, 31, 482-491.	1.6	6
122	Preparation of polyaniline nanomatrix formed in natural rubber. Polymer Journal, 2020, 52, 1357-1365.	1.3	6
123	Upper critical solution temperature (UCST) phase behaviour and pressure-sensitive adhesive properties in blends of poly(vinyl) with hydrogenated terpene resin. International Journal of Adhesion and Adhesives, 1993, 13, 181-187.	1.4	5
124	Structural Characterization of Crosslinking Points of Natural Rubber (E-Configuration) by Latex, Solution and Solid State 13C NMR Spectroscopy. Kobunshi Ronbunshu, 2007, 64, 301-308.	0.2	5
125	Characterization of poly(1â€methylâ€1,4â€butanediolâ€1,4â€diyl/2,3,4â€ŧrihydroâ€5â€methylfuranâ€2,5â€diyl) natural rubber through 2D NMR spectroscopy. Journal of Applied Polymer Science, 2011, 122, 3423-3429.	prepared :	from
126	Morphology dependence of crystallization of natural rubber in blends. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1424-1431.	2.0	5

#	Article	IF	Citations
127	Effect of strainâ€induced crystallization on the tear strength of natural rubber/styrene butadiene rubber blend. Advances in Polymer Technology, 2018, 37, 1850-1858.	0.8	5
128	Latex-state 13C-NMR spectroscopy for poly(butyl acrylate). Colloid and Polymer Science, 2019, 297, 133-139.	1.0	5
129	Free Volume of cis-1,4 polyisoprene/polybutadiene blends. Polymer Bulletin, 2000, 45, 275-279.	1.7	4
130	Interactions in blends of bisphenol-A polycarbonate and poly(styrene- co -methacrylic acid). Polymer, 2001, 42, 6657-6660.	1.8	4
131	Spherulite Growth of cis-1,4-Polyisoprene Isolated from Natural Rubber. Journal of Macromolecular Science - Physics, 2003, 42, 569-578.	0.4	4
132	Graft-Copolymerization of Acrylonitrile onto Surfaces of Natural Rubber Particles Using Deproteinized Natural Rubber Latex. Kobunshi Ronbunshu, 2007, 64, 155-160.	0.2	4
133	Effect of LiBr Concentration on Carbonation of Natural Rubber with Supercritical Carbon Dioxide. Macromolecules, 2007, 40, 8265-8270.	2.2	4
134	Dissolution Behavior of the Antioxidant in PP in Tap Water and Evaluation of the Polymer Degradation. Nippon Gomu Kyokaishi, 2011, 84, 176-181.	0.0	4
135	FIB processing for natural rubber with nanomatrix structure. Polymer, 2015, 57, 143-149.	1.8	4
136	Latex-state NMR spectroscopy for quantitative analysis of epoxidized deproteinized natural rubber. Polymers for Advanced Technologies, 2017, 28, 1156-1161.	1.6	4
137	DETERMINATION OF A SUITABLE CONDITION OF GRAFT COPOLYMERIZATION OF VINYLTRIETHOXYSILANE ONTO NR TO FORM NANOMATRIX STRUCTURE. Rubber Chemistry and Technology, 2018, 91, 767-775.	0.6	4
138	Preparation of Electromagnetic Shielding Coating Based on Natural Rubber. Materials Transactions, 2020, 61, 1544-1549.	0.4	4
139	Estimation of surface tension of poly(vinylidene fluoride-co-hexafluoro acetone) by corresponding states theory. Polymer, 1992, 33, 3753-3755.	1.8	3
140	Pressure Sensitive Adhesive Properties and Miscibility in Blends of Poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	0 222 Td	(ethylene-co-
141	Structure of solution-grown trans-1,4-polyisoprene crystals: 4. Effect of concentration on crystal form and melting temperature. Polymer, 1996, 37, 5711-5714.	1.8	3
142	Filler Network Change and Nonlinear Viscoelasticity of Rubbers. Advanced Materials Research, 2006, 11-12, 729-732.	0.3	3
143	Photo-reactive particle prepared from natural rubber and 3-acryloyloxy-2-hydroxypropyl methacrylate. Polymer, 2009, 50, 5042-5047.	1.8	3
144	Latex State and Solid-State NMR Spectroscopy of Elastomers. ACS Symposium Series, 2011, , 475-494.	0.5	3

#	Article	IF	CITATIONS
145	ASSIGNMENT OF NMR SIGNALS FOR CHLOROPRENE RUBBER BY TWO-DIMENSIONAL NMR SPECTROSCOPY. Rubber Chemistry and Technology, 2013, 86, 250-260.	0.6	3
146	Thermal Behavior of Vulcanized Deproteinzed Natural Rubber Nano-composites. Energy Procedia, 2014, 56, 634-640.	1.8	3
147	Preparation of Purified Natural Rubber by Removal of Proteins. Kobunshi Ronbunshu, 2015, 72, 1-6.	0.2	3
148	Frozen non-equilibrium structure for anisotropically deformed natural rubber with nanomatrix structure observed by 3D FIB-SEM and electron tomography. Colloid and Polymer Science, 2015, 293, 2555-2563.	1.0	3
149	Detection of isomerization in commercial natural rubber. Vietnam Journal of Chemistry, 2018, 56, 574-578.	0.7	3
150	Protein Removal from Natural Rubber Latex with Fe3O4@Al2O3 Nanoparticle. Journal of the Brazilian Chemical Society, $0,$	0.6	3
151	Graphene matrix formation in a natural rubber dispersoid. Polymer Journal, 2022, 54, 727-733.	1.3	3
152	Chain Anisotropy Effect on Polymer Nonlinear Viscoelasticity. E-Journal of Soft Materials, 2008, 4, 1-6.	2.0	2
153	Structural Analysis of Crosslinking Junctions of Vulcanized Natural Rubber by Field Gradient-Fast Magic Angle Spinning Solid-State NMR Spectroscopy. Nippon Gomu Kyokaishi, 2012, 85, 347-353.	0.0	2
154	Analysis of Degradation of EPDM Rubber Seal Through the Use of FIB-SEM. Seikei-Kakou, 2012, 24, 335-340.	0.0	2
155	EFFECT OF DECELERATED FERMENTATION ON MORPHOLOGY AND MECHANICAL PROPERTIES OF NATURAL RUBBER LATEX. Rubber Chemistry and Technology, 2013, 86, 615-625.	0.6	2
156	ANTIOXIDANTS FOR EPDM SEALS EXPOSED TO CHLORINATED TAP WATER. Rubber Chemistry and Technology, 2014, 87, 1-9.	0.6	2
157	Nuclear Magnetic Resonance Spectroscopy for the Analysis of Soft Materials. Nippon Gomu Kyokaishi, 2014, 87, 344-350.	0.0	2
158	Prevulcanization of isoprene rubber latex. Colloid and Polymer Science, 2015, 293, 1457-1464.	1.0	2
159	Initial Adhesion of Fibroblasts on Thin Rubber Scaffolds. Chemistry Letters, 2016, 45, 475-477.	0.7	2
160	Preparation of phenylâ€modified natural rubber in latex stage. Polymers for Advanced Technologies, 2019, 30, 1044-1050.	1.6	2
161	Preparation and application of epoxidized natural rubber from Artocarpus heterophyllus gum. Polymer Bulletin, 2021, 78, 5137-5152.	1.7	2
162	Electromagnetic shielding material based on hydrogenated natural rubber/expanded graphite blend: Preparation and characterization. Polymers for Advanced Technologies, 2021, 32, 3008-3017.	1.6	2

#	Article	IF	CITATIONS
163	ORIGIN OF ENERGETIC ELASTICITY AND ENTROPIC ELASTICITY OF NATURAL RUBBER WITH NANODIAMOND NANOMATRIX STRUCTURE. Rubber Chemistry and Technology, 2021, 94, 704-719.	0.6	2
164	PROTEIN INFLUENCE ON THE MECHANICAL PROPERTIES OF NR. Rubber Chemistry and Technology, 2021, 94, 657-668.	0.6	2
165	Graft copolymerization of methyl methacrylate and vinyltriethoxysilane binary monomers onto natural rubber. Journal of Polymer Research, 2021, 28, 1.	1.2	2
166	Rubber-state NMR Spectroscopy. New Developments in NMR, 2019, , 156-173.	0.1	2
167	Effect of naturally occurring proteins on graft copolymerization of vinyltriethoxysilane on natural rubber. Polymer Journal, 2022, 54, 633-641.	1.3	2
168	Tear Energy of Strain-Induced Crystallization of Natural Rubber/Styrene-Butadiene Rubber Blends. Kobunshi Ronbunshu, 2009, 66, 454-462.	0.2	1
169	A Novel Proton Conductive Polymer Electrolyte Prepared from Natural Rubber. Kobunshi Ronbunshu, 2012, 69, 228-234.	0.2	1
170	Study on the Resolution of Latex-State NMR spectroscopy. Kobunshi Ronbunshu, 2015, 72, 22-30.	0.2	1
171	Degradation of Natural Rubber and Deproteinized Natural Rubber. Nippon Gomu Kyokaishi, 2018, 91, 109-114.	0.0	1
172	Temperature glass and conductivity behavior of epoxy deproteinized natural rubber in ternary blend of EDPNR/PMMA/LiCF ₃ SO ₃ . Progress in Rubber, Plastics and Recycling Technology, 2022, 38, 89-98.	0.8	1
173	BROMINATION OF NR WITH N-BROMOSUCCINIMIDE. Rubber Chemistry and Technology, 2021, , .	0.6	1
174	Phase Transition and Mechanical Properties of Elastomer. Nihon Reoroji Gakkaishi, 2004, 32, 259-263.	0.2	1
175	Controlling Performance of Filled Rubbers. , 2013, , 1-10.		1
176	Process Control of Loss Factor in Soft Materials. Advanced Materials Research, 2006, 11-12, 725-728.	0.3	0
177	Hydrogenation of Epoxidized Natural Rubber in Latex Stage. Kobunshi Ronbunshu, 2015, 72, 118-123.	0.2	O
178	Reactive Mixing and Mechanical Property of Poly(lactic acid)/Epoxidized Natural Rubber Blend. Kobunshi Ronbunshu, 2015, 72, 124-129.	0.2	0
179	Preparation of Polymer Electrolyte Membrane with Nanomatrix Channel. Seikei-Kakou, 2015, 27, 373-378.	0.0	0
180	Structure and Properties of Natural Rubber. Nippon Gomu Kyokaishi, 2018, 91, 143-150.	0.0	0

SEIICHI KAWAHARA

#	Article	IF	CITATIONS
181	Deproteinization of Natural Rubber. Seikei-Kakou, 2014, 26, 456-460.	0.0	O
182	Structure and Purification of Natural Rubber. Seikei-Kakou, 2016, 28, 219-224.	0.0	0
183	Biosynthetic Process Analysis of Natural Rubber. Journal of Computer Chemistry Japan, 2017, 16, 165-166.	0.0	O
184	Analysis of Degradation of Commercial Natural Rubber through NMR. Seikei-Kakou, 2018, 30, 438-444.	0.0	0
185	Protein-free Natural Rubber. Nippon Gomu Kyokaishi, 2019, 92, 446-452.	0.0	0