Jun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5603080/publications.pdf

Version: 2024-02-01

126708 128067 3,785 78 33 60 citations h-index g-index papers 78 78 78 4777 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engineering electrochemical actuators with large bending strain based on 3D-structure titanium carbide MXene composites. Nano Research, 2021, 14, 2277-2284.	5.8	22
2	Three-dimensional graphene coated shape memory polyurethane foam with fast responsive performance. Journal of Materials Chemistry C, 2021, 9, 7444-7451.	2.7	24
3	A bidirectionally reversible light-responsive actuator based on shape memory polyurethane bilayer. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106322.	3.8	13
4	A facile route to prepare highâ^'performance dielectric nanocomposites of poly(methyl) Tj ETQq0 0 0 rgBT /Overl 209, 108792.	ock 10 Tf 3.8	50 627 Td (m 8
5	A Study into the \hat{I}^3 -Al2O3 Binder Influence on Nano-H-ZSM-5 via Scaled-Up Laboratory Methanol-to-Hydrocarbon Reaction. Catalysts, 2021, 11, 1140.	1.6	3
6	A facile approach to fabricate two-way shape memory polyurethane with large reversible strain and high shape stability. Smart Materials and Structures, 2020, 29, 055033.	1.8	13
7	Highâ€performance poly(vinylidene fluoride)â€polyamide 11/lithium niobate nanocomposites for the applications in air filtration. Journal of Applied Polymer Science, 2020, 137, 48957.	1.3	4
8	Shape memory epoxy composites with high mechanical performance manufactured by multi-material direct ink writing. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105903.	3.8	47
9	Improved Electret Properties of Poly(Vinylidene Fluoride)/Lithium Niobate Nanocomposites for Applications in Air Filters. Macromolecular Materials and Engineering, 2019, 304, 1900003.	1.7	10
10	Carbon fiber reinforced shape memory epoxy composites with superior mechanical performances. Composites Science and Technology, 2019, 177, 49-56.	3.8	45
11	Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2019, 117, 11-22.	3.8	100
12	Engineering Surface Patterns with Shape Memory Polymers: Multiple Design Dimensions for Diverse and Hierarchical Structures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1563-1570.	4.0	23
13	Wear and friction of epoxy based nanocomposites with silica nanoparticles and wax-containing microcapsules. Composites Part A: Applied Science and Manufacturing, 2018, 107, 607-615.	3.8	63
14	A temperature-activated nanocomposite metamaterial absorber with a wide tunability. Nano Research, 2018, 11, 3931-3942.	5.8	22
15	Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL) /multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Composites Science and Technology, 2018, 168, 255-262.	3.8	113
16	On the volume resistivity of silica nanoparticle filled epoxy with different surface modifications. Composites Part A: Applied Science and Manufacturing, 2017, 99, 139-148.	3.8	27
17	High strain rate compression of epoxy based nanocomposites. Composites Part A: Applied Science and Manufacturing, 2016, 90, 62-70.	3.8	31
18	Continuously Tunable Wettability by Using Surface Patterned Shape Memory Polymers with Giant Deformability. Small, 2016, 12, 3327-3333.	5.2	49

#	Article	lF	CITATIONS
19	High Performance Shape Memory Epoxy/Carbon Nanotube Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 311-320.	4.0	117
20	Effect of the compatibility on dielectric performance and breakdown strength of poly(vinylidene) Tj ETQq0 0 0 r	gBT <u>1</u> ,9verl	ock 10 Tf 50 7
21	Preparation and dielectric properties of (Ba _{0.5} from the properties of (Ba _{0.5} from the properties of Journal of Applied Polymer Science, 2015, 132, .	1.3	6
22	Remarkably variable dielectric and magnetic properties of poly(vinylidene fluoride) nanocomposite films with triple-layer structure. Composites Science and Technology, 2015, 107, 107-112.	3.8	17
23	Dielectric and magnetic properties of Fe@Fe O /epoxy resin nanocomposites as high-performance electromagnetic insulating materials. Composites Science and Technology, 2015, 114, 57-63.	3.8	21
24	Reduced sedimentation of barium titanate nanoparticles in poly(vinylidene fluoride) films during solution casting by surface modification. Journal of Applied Polymer Science, $2015, 132, \ldots$	1.3	5
25	Effects of carbon black nanoparticles on two-way reversible shape memory in crosslinked polyethylene. Polymer, 2015, 56, 490-497.	1.8	62
26	Dually Actuated Triple Shape Memory Polymers of Cross-Linked Polycyclooctene–Carbon Nanotube/Polyethylene Nanocomposites. ACS Applied Materials & 1, 2014, 6, 20051-20059.	4.0	61
27	Two-way shape memory property and its structural origin of cross-linked poly(Îμ-caprolactone). RSC Advances, 2014, 4, 55483-55494.	1.7	56
28	Dielectric properties of polystyrene based composites filled with core-shell BaTiO ₃ /polystyrene hybrid nanoparticles. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 1438-1445.	1.8	23
29	Preparation and wide-frequency dielectric properties of (Ba0.5Sr0.4Ca0.1)TiO3/poly(vinylidene) Tj ETQq1 1 0.75	34314 rgB ⁻	Г/Qyerlock <mark>1</mark> 0
30	Advanced dielectric polymer nanocomposites by constructing a ternary continuous structure in polymer blends containing poly(methyl methacrylate) (PMMA) modified carbon nanotubes. Journal of Materials Chemistry A, 2014, 2, 10614.	5.2	50
31	A hybrid Mg–Al layered double hydroxide/graphene nanostructure obtained via hydrothermal synthesis. Chemical Physics Letters, 2014, 605-606, 77-80.	1.2	31
32	Effect of the selective localization of carbon nanotubes in polystyrene/poly(vinylidene fluoride) blends on their dielectric, thermal, and mechanical properties. Materials & Design, 2014, 56, 807-815.	5.1	89
33	Improved Thermal Conductivity and Flame Retardancy in Polystyrene/Poly(vinylidene fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6915-6924.	4.0	153
34	Improved Self-Healing of Polyethylene/Carbon Black Nanocomposites by Their Shape Memory Effect. Journal of Physical Chemistry B, 2013, 117, 1467-1474.	1.2	75
35	High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers. Composites Science and Technology, 2013, 89, 142-148.	3.8	115
36	Preparation and dielectric behaviors of thermoplastic and thermosetting polymer nanocomposite films containing BaTiO3 nanoparticles with different diameters. Composites Science and Technology, 2013, 80, 66-72.	3.8	64

#	Article	IF	CITATIONS
37	Tuning the Dielectric Properties of Polystyrene/Poly(vinylidene fluoride) Blends by Selectively Localizing Carbon Black Nanoparticles. Journal of Physical Chemistry B, 2013, 117, 2505-2515.	1.2	62
38	Increased electroaction through a molecular flexibility tuning process in TiO2–polydimethylsilicone nanocomposites. Journal of Materials Chemistry A, 2013, 1, 3140.	5.2	100
39	Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. Journal of Materials Chemistry A, 2013, 1, 6162.	5.2	179
40	Ester-functionalized poly(3-alkylthiophene) copolymers: Synthesis, physicochemical characterization and performance in bulk heterojunction organic solar cells. Organic Electronics, 2013, 14, 523-534.	1.4	22
41	Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer, 2013, 54, 1916-1922.	1.8	204
42	Triple Shape Memory Effects of Cross-Linked Polyethylene/Polypropylene Blends with Cocontinuous Architecture. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5550-5556.	4.0	136
43	Preparation and characterization of surface modified silicon carbide/polystyrene nanocomposites. Journal of Applied Polymer Science, 2013, 130, 638-644.	1.3	36
44	Effect of the Mixing on the Dielectric Constant of Poly(vinylidene fluoride)/Isotactic Polypropylene Blends. Science of Advanced Materials, 2013, 5, 505-511.	0.1	17
45	Experimental study and theoretical prediction of dielectric permittivity in BaTiO3/polyimide nanocomposite films. Applied Physics Letters, 2012, 100, .	1.5	71
46	Two Lanthanide-Based Metal–Organic Frameworks with Flexible Alicyclic Carboxylate Ligands: Synthesis, Crystal Structures, and Near-Infrared Luminescence Property. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 1087-1092.	1.9	4
47	Improved stability of volume resistivity in carbon black/ethylene-vinyl acetate copolymer composites by employing multi-walled carbon nanotubes as second filler. Polymer, 2012, 53, 4871-4878.	1.8	27
48	Size-dependent low-frequency dielectric properties in the BaTiO3/poly(vinylidene fluoride) nanocomposite films. Applied Physics Letters, 2012, 100, .	1.5	104
49	Improved Dielectric Properties of Nanocomposites Based on Poly(vinylidene fluoride) and Poly(vinyl) Tj ETQq1 1	0.784314 4.0	rgBT/Overlo
50	Phase behavior of PCBM blends with different conjugated polymers. Physical Chemistry Chemical Physics, 2011, 13, 12285.	1.3	27
51	Melting and Crystallization of Poly(ethylene oxide) Nanofilms Studied by Micromechanical Cantilevers. Journal of Physical Chemistry C, 2011, 115, 22347-22353.	1.5	7
52	Surface-Functionalized MWNTs with Emeraldine Base: Preparation and Improving Dielectric Properties of Polymer Nanocomposites. ACS Applied Materials & Emp.; Interfaces, 2011, 3, 4557-4560.	4.0	106
53	Thermal Stability of Poly[2-methoxy-5-(2′-phenylethoxy)-1,4-phenylenevinylene] (MPE-PPV):Fullerene Bulk Heterojunction Solar Cells. Macromolecules, 2011, 44, 8470-8478.	2.2	61
54	Solvothermal Treatment of Triangular Molybdenum(IV) Oxo Species - A New Approach for the Synthesis of New Molybdenum Oxo Clusters. European Journal of Inorganic Chemistry, 2011, 2011, 4096-4102.	1.0	19

#	Article	IF	CITATIONS
55	USANS study of porosity and water content in sponge-like hydrogels. Polymer, 2010, 51, 2049-2056.	1.8	12
56	Demixing and Remixing Kinetics of Poly(2-isopropyl-2-oxazoline) (PIPOZ) Aqueous Solutions Studied by Modulated Temperature Differential Scanning Calorimetry. Macromolecules, 2010, 43, 6853-6860.	2.2	54
57	Phase Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphology. Journal of Physical Chemistry B, 2009, 113, 1587-1591.	1.2	333
58	Demixing and Remixing Kinetics in Aqueous Dispersions of Poly(<i>N</i> -isopropylacrylamide) (PNIPAM) Brushes Bound to Gold Nanoparticles Studied by Means of Modulated Temperature Differential Scanning Calorimetry. Macromolecules, 2009, 42, 5317-5327.	2.2	23
59	The use of nanofibers of P3HT in bulk heterojunction solar cells: the effect of order and morphology on the performance of P3HT:PCBM blends. , 2009, , .		O
60	Syntheses, Crystal Structures, and Magnetic Properties of Copper(II) and Manganese(II) Compounds Constructed from 5â€Sulfoisophthalic Acid (H ₃ SIP) and 2,2′â€Bipyridine (bpy) Ligands. European Journal of Inorganic Chemistry, 2008, 2008, 1157-1163.	1.0	19
61	Elucidating the aspect of "phase separation" in organic blends by means of thermal analysis., 2007,,.		2
62	α Transition of polyamideÂ6 in chemically bonded polyamideÂ6/polytetrafluoroethylene compounds studied by dynamic mechanical thermal analysis and dielectric thermal analysis. Journal of Materials Science, 2007, 42, 4757-4762.	1.7	5
63	Thermal contributions to the bending of bimaterial cantilever sensors. Applied Physics Letters, 2006, 89, 033110.	1.5	14
64	Linear low-density polyethylene/poly(ethylene-ran-butene) elastomer blends: Miscibility and crystallization behavior. Journal of Polymer Research, 2005, 11, 323-331.	1.2	7
65	Thermal Characterization of Upper Critical Solution Temperature m-LLDPE/Poly(ethylene-ran-butene) Elastomer Blends. Macromolecular Materials and Engineering, 2004, 289, 833-839.	1.7	O
66	Miscibility and Crystallization Behaviors of Polyamide 6/Polytetrafluoroethylene Blends. Macromolecular Materials and Engineering, 2004, 289, 1053-1058.	1.7	6
67	Effect of inorganic phase on polymeric relaxation dynamics in PMMA/silica hybrids studied by dielectric analysis. European Polymer Journal, 2004, 40, 1807-1814.	2.6	46
68	Crystallization of partially miscible linear low-density polyethylene/poly(ethylene-co-vinylacetate) blends. Materials Letters, 2004, 58, 3613-3617.	1.3	46
69	Study of the Dual Amorphous Phases in Semicrystalline Poly(ethylene terephthalate) Using the Heat Capacity Increment at the Glass Transition. Macromolecules, 2003, 36, 2176-2178.	2.2	6
70	Study of the Amorphous Phase in Semicrystalline Poly(ethylene terephthalate) via Physical Aging. Macromolecules, 2002, 35, 3097-3103.	2.2	50
71	Study of the amorphous phase in semicrystalline poly(ethy1ene terephthalate) via dynamic mechanical thermal analysis. Polymer Bulletin, 2002, 49, 197-203.	1.7	13

The effect of annealing on the subsequent cold crystallization of amorphous poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td 2.6

#	Article	lF	CITATIONS
73	A Study of the Physical Aging in Semicrystalline Poly(ethylene terephthalate) via Differential Scanning Calorimetry. Macromolecules, 2001, 34, 343-345.	2.2	39
74	Amorphous phase in atactic polystyrene. Polymer Bulletin, 2001, 47, 91-97.	1.7	5
75	Mechanical Properties and Orientation of Atactic Poly(methyl methacrylate): Sub-Tg Annealing and Stereocomplex Formation. Macromolecular Rapid Communications, 2001, 22, 948-951.	2.0	14
76	The Study of Stress-Yielding of Aged Atactic Polystyrene (a-PS) by Differential Scanning Calorimetry. Macromolecular Chemistry and Physics, 2001, 202, 512-515.	1,1	5
77	The preparation and characterization of amphiphilic core/shell particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 161, 489-498.	2.3	9
78	Synthesis and Characterization of Rare Earth Complexes with Benzene-1,3,5-Tricarboxylic Acid. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1998, 28, 1405-1414.	1.8	4