Elias Berriochoa

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/560265/publications.pdf
Version: 2024-02-01

\# Ine Gloosae viloranam phenomenon in the approximation of <mmi:matn

1 altimg="si5.svg"> mml:mrow mml:mo | </mml:mo> mml:mix</mml:mi>mml:mo|</mml:mo></mml:mrow> 2|.mml:math > by using Lagrange interpolation on the Chebyshevâ€"Lobatto nodal systems. Journal of Computational

2 Mechanical Models for Hermite Interpolation on the Unit Circle. Mathematics, 2021, 9, 1043.
2.2

3
Gibbsâ€ "Wilbraham phenomenon on Lagrange interpolation based on analytic weights on the
circle. Journal of Computational and Applied Mathematics, 2020, 365, 112376 .
4 Classical Lagrange Interpolation Based on General Nodal Systems at Perturbed Roots of Unity.
Mathematics, 2020, 8, 498.
$2.0 \quad 5$

Classical Lagrange Interpolation Based on General Nodal Systems at Perturbed Roots of Unity.
2.2

2

Szeg \AA © transformation and zeros of analytic perturbations of Chebyshev weights. Journal of
$1.0 \quad 2$
SzegA transformation and zeros of analytic perturbations of
Mathematical Analysis and Applications, 2019, 470, 571-583.

6 Algorithms, Convergence and Rate of Convergence for an Interpolation Model Between Lagrange and
Hermite. Results in Mathematics, 2018, 73, 1.
$0.8 \quad 1$

Gibbsâ€"Wilbraham oscillation related to an Hermite interpolation problem on the unit circle. Journal
$7 \quad \begin{aligned} & \text { Gibssat Wibraham oscilation related to an Hermite interpolation } \\ & \text { of Computational and Applied Mathematics, 2018, 344, 657-675. }\end{aligned}$
2.0

3

8 An interpolation problem on the circle between Lagrange and Hermite problems. Journal of
Approximation Theory, 2017, 215, 118-144.
$0.8 \quad 4$

9 A note on the rate of convergence for Chebyshev-Lobatto and Radau systems. Open Mathematics, 2016,
$9 \quad 14,156-166$.

10 Gauss rules associated with nearly singular weights. Applied Numerical Mathematics, 2015, 91, 1-10.
2.1

3
Cibbs phenomenon in the Hermite interpolation on the circle. Applied Mathematics and Computation,
2015, 253, 274-286.

14 Hermite Interpolation on the Unit Circle Considering up to the Second Derivative. ISRN Mathematical
$0.4 \quad 1$ Analysis, 2014, 2014, 1-10.

> 15 Algorithms and convergence for Hermite interpolation based on extended Chebyshev nodal systems. Applied Mathematics and Computation, 2014, 234, 223-236.

16 Asymptotic constants for the error of Hermite-FejÃ ©r interpolation on the unit circle. Electronic Notes in Discrete Mathematics, 2013, 43, 397-400.
$0.4 \quad 1$

17 Modified Gauss rules for approximate calculation of some strongly singular integrals. Electronic
Notes in Discrete Mathematics, 2013, 43, 411-416.
$0.4 \quad 1$

```
1 9 ~ A b o u t ~ N o d a l ~ S y s t e m s ~ f o r ~ L a g r a n g e ~ I n t e r p o l a t i o n ~ o n ~ t h e ~ C i r c l e . ~ J o u r n a l ~ o f ~ A p p l i e d ~ M a t h e m a t i c s , ~ 2 0 1 2 ,
2012, 1-11.
About measures and nodal systems for which the Hermite interpolants uniformly converge to
continuous functions on the circle and interval. Applied Mathematics and Computation, 2011, 218,
\(4813-4813\).
24 Some improvements to the Hermiteâ€"FejÃ®r interpolation on the circle and bounded interval. Computers
and Mathematics With Applications, 2011, 61, 1228-1240.
25 Complex measures having quadrature formulae with optimal exactness. Acta Mathematica Hungarica,
\(2010,126,51-64\).

Algorithms for solving Hermite interpolation problems using the Fast Fourier Transform. Journal of Computational and Applied Mathematics, 2010, 235, 882-894.
Characterizing the measures on the unit circle with exact quadrature formulas in the space of
polynomials. Computers and Mathematics With Applications, 2009, 58, 1370-1382.
\(2.7 \quad 2\)

Characterizing curves satisfying the Gaussâ€"Christoffel theorem. Journal of Computational and 2.0 1 Applied Mathematics, 2009, 233, 630-633.
\[
2.0
\]
\[
0
\]

Asymptotics on the support for sobolev orthogonal polynomials on a bounded interval. Computers
On the Strong Asymptotics for Sobolev Orthogonal Polynomials on the Circle. Constructive
Approximation, 2003, 19, 299-307.

42 Extension inside the disk of asymptotics for Sobolev orthogonal polynomials. Computers and Mathematics With Applications, 2003, 46, 1263-1272.
A necessary condition for the extension of Szeg \(\AA^{\prime \prime}\) s asymptotics inside the disk in the Sobolev case.
Journal of Computational and Applied Mathematics, 2003, 153, 73-78.

44 Strong asymptotics inside the unit disk for Sobolev orthogonal polynomials. Computers and Mathematics With Applications, 2002, 44, 253-261.
\begin{tabular}{|c|c|c|c|}
\hline 45 & Differential properties for a class of Sobolev orthogonal polynomials. Journal of Computational and Applied Mathematics, 2002, 146, 361-372. & 2.0 & 0 \\
\hline 46 & Differential properties for Sobolev orthogonality on the unit circle. Journal of Computational and Applied Mathematics, 2001, 133, 231-239. & 2.0 & 0 \\
\hline 47 & Title is missing!. Acta Applicandae Mathematicae, 2000, 61, 81-86. & 1.0 & 0 \\
\hline 48 & Polynomials with minimal norm and new results in SzegÅ's theory. Complex Variables and Elliptic Equations, 2000, 43, 151-167. & 0.2 & 3 \\
\hline 49 & Bernstein-szegÃ \(\tau\)-lebesgue sobolev orthogonal polynomials on the unit circle. Journal of Difference Equations and Applications, 2000, 6, 719-737. & 1.1 & 1 \\
\hline
\end{tabular}

50 A family of Sobolev orthogonal polynomials on the unit circle. Journal of Computational and Applied
2.0

7
Mathematics, 1999, 105, 163-173.
Strong Asymptotics for the Continuous Sobolev Orthogonal Polynomials on the Unit Circle. Journal
of Approximation Theory, 1999, 100, 381-391.

A study of the generalized Christoffel functions with applications. Methods and Applications of Analysis, 1999, 6, 327-336.```

