Ye-Guang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5602585/publications.pdf Version: 2024-02-01

		44042	15716
127	19,270	48	125
papers	citations	h-index	g-index
107	107	107	
127	127	127	33566
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Controlling TGF-β signaling. Genes and Development, 2000, 14, 627-644.	2.7	1,384
4	Silencing of TGF-Î ² signalling by the pseudoreceptor BAMBI. Nature, 1999, 401, 480-485.	13.7	642
5	Dishevelled: The hub of Wnt signaling. Cellular Signalling, 2010, 22, 717-727.	1.7	640
6	TGF-β Signaling from Receptors to Smads. Cold Spring Harbor Perspectives in Biology, 2016, 8, a022061.	2.3	578
7	PPM1A Functions as a Smad Phosphatase to Terminate TGFÎ ² Signaling. Cell, 2006, 125, 915-928.	13.5	422
8	Crystal Structure of the Cytoplasmic Domain of the Type I TGF Î ² Receptor in Complex with FKBP12. Cell, 1999, 96, 425-436.	13.5	415
9	The TGFÎ ² Receptor Activation Process. Molecular Cell, 2001, 8, 671-682.	4.5	346
10	Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nature Cell Biology, 2010, 12, 781-790.	4.6	339
11	Mechanism of TGFÎ ² receptor inhibition by FKBP12. EMBO Journal, 1997, 16, 3866-3876.	3.5	322
12	Structural Basis of Smad2 Recognition by the Smad Anchor for Receptor Activation. Science, 2000, 287, 92-97.	6.0	276
13	Endocytic regulation of TGF-Î ² signaling. Cell Research, 2009, 19, 58-70.	5.7	243
14	Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. Journal of Experimental Medicine, 2020, 217, .	4.2	227
15	Smad7 Antagonizes Transforming Growth Factor Î ² Signaling in the Nucleus by Interfering with Functional Smad-DNA Complex Formation. Molecular and Cellular Biology, 2007, 27, 4488-4499.	1.1	220
16	BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. Nature Communications, 2017, 8, 13824.	5.8	214
17	MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood, 2008, 111, 588-595.	0.6	195
18	Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling. Biochemical Journal, 2011, 434, 1-10.	1.7	187

#	Article	IF	CITATIONS
19	Severe Acute Respiratory Syndrome-associated Coronavirus Nucleocapsid Protein Interacts with Smad3 and Modulates Transforming Growth Factor-β Signaling. Journal of Biological Chemistry, 2008, 283, 3272-3280.	1.6	180
20	Regulation of TGF-Î ² receptor activity. Cell and Bioscience, 2012, 2, 9.	2.1	169
21	Activin Signaling and Its Role in Regulation of Cell Proliferation, Apoptosis, and Carcinogenesis. Experimental Biology and Medicine, 2006, 231, 534-544.	1.1	159
22	Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor-β (TGF-β)/Smad Signaling. Journal of Biological Chemistry, 2016, 291, 382-392.	1.6	144
23	The nuclear import function of Smad2 is masked by SARA and unmasked by TGFb-dependent phosphorylation. Nature Cell Biology, 2000, 2, 559-562.	4.6	138
24	BMP4 Signaling Acts via Dual-Specificity Phosphatase 9 to Control ERK Activity in Mouse Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 171-182.	5.2	134
25	Dapper 1 Antagonizes Wnt Signaling by Promoting Dishevelled Degradation. Journal of Biological Chemistry, 2006, 281, 8607-8612.	1.6	132
26	Human BAMBI Cooperates with Smad7 to Inhibit Transforming Growth Factor-β Signaling. Journal of Biological Chemistry, 2009, 284, 30097-30104.	1.6	127
27	c-Cbl-Mediated Neddylation Antagonizes Ubiquitination and Degradation of the TGF-Î ² Type II Receptor. Molecular Cell, 2013, 49, 499-510.	4.5	126
28	Zebrafish Dpr2 Inhibits Mesoderm Induction by Promoting Degradation of Nodal Receptors. Science, 2004, 306, 114-117.	6.0	124
29	Structural insights into the TRIM family of ubiquitin E3 ligases. Cell Research, 2014, 24, 762-765.	5.7	118
30	Specific Activation of Mitogen-activated Protein Kinase by Transforming Growth Factor-β Receptors in Lipid Rafts Is Required for Epithelial Cell Plasticity. Molecular Biology of the Cell, 2009, 20, 1020-1029.	0.9	115
31	Inhibition of Severe Acute Respiratory Syndrome Virus Replication by Small Interfering RNAs in Mammalian Cells. Journal of Virology, 2004, 78, 7523-7527.	1.5	113
32	Single-molecule imaging reveals transforming growth factor-Î ² -induced type II receptor dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15679-15683.	3.3	108
33	Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. Genome Research, 2010, 20, 36-44.	2.4	108
34	HECT Domain-containing E3 Ubiquitin Ligase NEDD4L Negatively Regulates Wnt Signaling by Targeting Dishevelled for Proteasomal Degradation. Journal of Biological Chemistry, 2013, 288, 8289-8298.	1.6	105
35	Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway. Nature Communications, 2020, 11, 37.	5.8	87
36	Feedback regulation of TGF-β signaling. Acta Biochimica Et Biophysica Sinica, 2018, 50, 37-50.	0.9	86

#	Article	IF	CITATIONS
37	Transforming Growth Factor β Activates Smad2 in the Absence of Receptor Endocytosis. Journal of Biological Chemistry, 2002, 277, 29363-29368.	1.6	82
38	Internalization of the TGF-β type I receptor into caveolin-1 and EEA1 double-positive early endosomes. Cell Research, 2015, 25, 738-752.	5.7	72
39	A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discovery, 2020, 6, 35.	3.1	67
40	Endofin, a FYVE Domain Protein, Interacts with Smad4 and Facilitates Transforming Growth Factor-β Signaling. Journal of Biological Chemistry, 2007, 282, 9688-9695.	1.6	65
41	Dynamic Sialylation in Transforming Growth Factor-β (TGF-β)-induced Epithelial to Mesenchymal Transition. Journal of Biological Chemistry, 2015, 290, 12000-12013.	1.6	64
42	Smad2 mediates Activin/Nodal signaling in mesendoderm differentiation of mouse embryonic stem cells. Cell Research, 2010, 20, 1306-1318.	5.7	62
43	Phase separation of Axin organizes the β-catenin destruction complex. Journal of Cell Biology, 2021, 220, .	2.3	59
44	HER2/EGFR–AKT Signaling Switches TGFβ from Inhibiting Cell Proliferation to Promoting Cell Migration in Breast Cancer. Cancer Research, 2018, 78, 6073-6085.	0.4	58
45	Dapper1 promotes autophagy by enhancing the Beclin1-Vps34-Atg14L complex formation. Cell Research, 2014, 24, 912-924.	5.7	57
46	Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light. Nature Nanotechnology, 2015, 10, 465-471.	15.6	57
47	The evolutionally conserved activity of Dapper2 in antagonizing TGFâ€ÃŸ signaling. FASEB Journal, 2007, 21, 682-690.	0.2	55
48	Dapper1 Is a Nucleocytoplasmic Shuttling Protein That Negatively Modulates Wnt Signaling in the Nucleus. Journal of Biological Chemistry, 2008, 283, 35679-35688.	1.6	51
49	PICK1 promotes caveolin-dependent degradation of TGF-β type I receptor. Cell Research, 2012, 22, 1467-1478.	5.7	49
50	Loss of Dact1 Disrupts Planar Cell Polarity Signaling by Altering Dishevelled Activity and Leads to Posterior Malformation in Mice. Journal of Biological Chemistry, 2010, 285, 11023-11030.	1.6	48
51	Smad7 enables STAT3 activation and promotes pluripotency independent of TGF-β signaling. Proceedings of the United States of America, 2017, 114, 10113-10118.	3.3	48
52	The non-muscle-myosin-II heavy chain Myh9 mediates colitis-induced epithelium injury by restricting Lgr5+ stem cells. Nature Communications, 2015, 6, 7166.	5.8	47
53	Signaling Control of Differentiation of Embryonic Stem Cells toward Mesendoderm. Journal of Molecular Biology, 2016, 428, 1409-1422.	2.0	47
54	Monomeric type I and type III transforming growth factor-Î ² receptors and their dimerization revealed by single-molecule imaging. Cell Research, 2010, 20, 1216-1223.	5.7	46

#	Article	IF	CITATIONS
55	TSC-22 Promotes Transforming Growth Factor β-Mediated Cardiac Myofibroblast Differentiation by Antagonizing Smad7 Activity. Molecular and Cellular Biology, 2011, 31, 3700-3709.	1.1	46
56	A growth factor-free culture system underscores the coordination between Wnt and BMP signaling in Lgr5+ intestinal stem cell maintenance. Cell Discovery, 2018, 4, 49.	3.1	45
57	BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states. Cell Reports, 2022, 38, 110438.	2.9	45
58	A novel peptide stapling strategy enables the retention of ring-closing amino acid side chains for the Wnt/β-catenin signalling pathway. Chemical Science, 2017, 8, 7368-7373.	3.7	44
59	A crucial role for bone morphogenetic protein-Smad1 signalling in the DNA damage response. Nature Communications, 2012, 3, 836.	5.8	41
60	TGFβ induced factor homeobox 1 promotes colorectal cancer development through activating Wnt/β-catenin signaling. Oncotarget, 2017, 8, 70214-70225.	0.8	41
61	Design of stapled α-helical peptides to specifically activate Wnt/β-catenin signaling. Cell Research, 2013, 23, 581-584.	5.7	37
62	Monolayer culture of intestinal epithelium sustains Lgr5+ intestinal stem cells. Cell Discovery, 2018, 4, 32.	3.1	37
63	Intestinal epithelial plasticity and regeneration via cell dedifferentiation. Cell Regeneration, 2020, 9, 14.	1.1	37
64	Xenopus Skip Modulates Wnt/β-Catenin Signaling and Functions in Neural Crest Induction. Journal of Biological Chemistry, 2010, 285, 10890-10901.	1.6	36
65	Regulation of TGF- <i>\hat{I}^2</i> Signal Transduction. Scientifica, 2014, 2014, 1-9.	0.6	36
66	Identification of novel rare mutations of DACT1 in human neural tube defects. Human Mutation, 2012, 33, 1450-1455.	1.1	35
67	The Wnt Signaling Antagonist Dapper1 Accelerates Dishevelled2 Degradation via Promoting Its Ubiquitination and Aggregate-induced Autophagy. Journal of Biological Chemistry, 2015, 290, 12346-12354.	1.6	35
68	SARS Coronavirus and Lung Fibrosis. , 2010, , 247-258.		35
69	DNA Damage Activates TGF-β Signaling via ATM-c-Cbl-Mediated Stabilization of the Type II Receptor TβRII. Cell Reports, 2019, 28, 735-745.e4.	2.9	34
70	Lateral diffusion of TGF-β type I receptor studied by single-molecule imaging. Biochemical and Biophysical Research Communications, 2007, 356, 67-71.	1.0	33
71	CXXC5 suppresses hepatocellular carcinoma by promoting TGF-β-induced cell cycle arrest and apoptosis. Journal of Molecular Cell Biology, 2018, 10, 48-59.	1.5	33
72	Triose Kinase Controls the Lipogenic Potential of Fructose and Dietary Tolerance. Cell Metabolism, 2020, 32, 605-618.e7.	7.2	32

#	Article	IF	CITATIONS
73	Functions of BMP signaling in embryonic stem cell fate determination. Experimental Cell Research, 2013, 319, 113-119.	1.2	29
74	Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. Journal of Molecular Cell Biology, 2014, 6, 272-285.	1.5	29
75	NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling. Developmental Biology, 2014, 392, 15-25.	0.9	29
76	Regulation of intestinal stem cell fate specification. Science China Life Sciences, 2015, 58, 570-578.	2.3	29
77	2D- and 3D-Based Intestinal Stem Cell Cultures for Personalized Medicine. Cells, 2018, 7, 225.	1.8	29
78	Where PI3K/Akt Meets Smads: The Crosstalk Determines Human Embryonic Stem Cell Fate. Cell Stem Cell, 2012, 10, 231-232.	5.2	28
79	BMP Induces Cochlin Expression to Facilitate Self-renewal and Suppress Neural Differentiation of Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2013, 288, 8053-8060.	1.6	28
80	BMP signaling in homeostasis, transformation and inflammatory response of intestinal epithelium. Science China Life Sciences, 2018, 61, 800-807.	2.3	28
81	Cancer-associated adipocyte-derived G-CSF promotes breast cancer malignancy via Stat3 signaling. Journal of Molecular Cell Biology, 2020, 12, 723-737.	1.5	28
82	Metformin inhibits ALK1-mediated angiogenesis via activation of AMPK. Oncotarget, 2017, 8, 32794-32806.	0.8	28
83	Regulation of embryonic stem cell self-renewal and differentiation by TGF-Î ² family signaling. Science China Life Sciences, 2010, 53, 497-503.	2.3	27
84	Activin/Smad2-induced Histone H3 Lys-27 Trimethylation (H3K27me3) Reduction Is Crucial to Initiate Mesendoderm Differentiation of Human Embryonic Stem Cells. Journal of Biological Chemistry, 2017, 292, 1339-1350.	1.6	26
85	AMPK downregulates ALK2 via increasing the interaction between Smurf1 and Smad6, leading to inhibition of osteogenic differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2369-2377.	1.9	25
86	Interplay between TGF-Î ² signaling and receptor tyrosine kinases in tumor development. Science China Life Sciences, 2017, 60, 1133-1141.	2.3	24
87	The Interplay Between TGF-Î ² Signaling and Cell Metabolism. Frontiers in Cell and Developmental Biology, 2022, 10, 846723.	1.8	24
88	p21-activated Kinase 2 (PAK2) Inhibits TGF-β Signaling in Madin-Darby Canine Kidney (MDCK) Epithelial Cells by Interfering with the Receptor-Smad Interaction. Journal of Biological Chemistry, 2012, 287, 13705-13712.	1.6	23
89	Receptor for Activated C Kinase 1 (RACK1) Promotes Dishevelled Protein Degradation via Autophagy and Antagonizes Wnt Signaling. Journal of Biological Chemistry, 2016, 291, 12871-12879.	1.6	22
90	Generation of 3D human gastrointestinal organoids: principle and applications. Cell Regeneration, 2020, 9, 6.	1.1	22

#	Article	IF	CITATIONS
91	Disruption of the Dapper3 Gene Aggravates Ureteral Obstruction-mediated Renal Fibrosis by Amplifying Wnt/l²-catenin Signaling. Journal of Biological Chemistry, 2013, 288, 15006-15014.	1.6	21
92	The S-G2 phase enriched β-catenin/TCF complex ensures cell survival and cell cycle progression. Journal of Cell Science, 2014, 127, 4833-45.	1.2	21
93	A resident stromal cell population actively restrains innate immune response in the propagation phase of colitis pathogenesis in mice. Science Translational Medicine, 2021, 13, .	5.8	21
94	Protein Kinase A-mediated 14-3-3 Association Impedes Human Dapper1 to Promote Dishevelled Degradation. Journal of Biological Chemistry, 2011, 286, 14870-14880.	1.6	18
95	Noncanonical TGF-Î ² signaling leads to FBXO3-mediated degradation of ΔNp63α promoting breast cancer metastasis and poor clinical prognosis. PLoS Biology, 2021, 19, e3001113.	2.6	17
96	H3K18ac Primes Mesendodermal Differentiation upon Nodal Signaling. Stem Cell Reports, 2019, 13, 642-656.	2.3	16
97	Welcome to Cell Regeneration. Cell Regeneration, 2020, 9, 1.	1.1	15
98	Establishment of human distal lung organoids for SARS-CoV-2 infection. Cell Discovery, 2021, 7, 108.	3.1	14
99	Regulation of Dishevelled protein activity and stability by post-translational modifications and autophagy. Trends in Biochemical Sciences, 2021, 46, 1003-1016.	3.7	13
100	Cross-species single-cell transcriptomic analysis reveals divergence of cell composition and functions in mammalian ileum epithelium. Cell Regeneration, 2022, 11, 19.	1.1	13
101	LGR5 constitutively activates NFâ€₽B signaling to regulate the growth of intestinal crypts. FASEB Journal, 2020, 34, 15605-15620.	0.2	12
102	Recent advances in tissue stem cells. Science China Life Sciences, 2021, 64, 1998-2029.	2.3	12
103	Mesenchymal-epithelial interaction regulates gastrointestinal tract development in mouse embryos. Cell Reports, 2022, 40, 111053.	2.9	12
104	Activin/Smad2 and Wnt/β-catenin up-regulate HAS2 and ALDH3A2 to facilitate mesendoderm differentiation of human embryonic stem cells. Journal of Biological Chemistry, 2018, 293, 18444-18453.	1.6	10
105	Selective removal of dishevelled by autophagy: A role of p62. Autophagy, 2011, 7, 334-335.	4.3	9
106	Myc-interacting zinc-finger protein 1 positively regulates Wnt signalling by protecting Dishevelled from Dapper1-mediated degradation. Biochemical Journal, 2015, 466, 499-509.	1.7	9
107	Tankyrases maintain homeostasis of intestinal epithelium by preventing cell death. PLoS Genetics, 2018, 14, e1007697.	1.5	9
108	Targeting hyperactive TGFBR2 for treating MYOCD deficient lung cancer. Theranostics, 2021, 11, 6592-6606.	4.6	9

#	Article	IF	CITATIONS
109	Activin Regulates Self-renewal and Differentiation of Trophoblast Stem Cells by Down-regulating the X Chromosome Gene Bcor. Journal of Biological Chemistry, 2015, 290, 22019-22029.	1.6	8
110	Liquid–liquid phase separation drives the β atenin destruction complex formation. BioEssays, 2021, 43, e2100138.	1.2	8
111	Positive feedback of SuFu negating protein 1 on Hedgehog signaling promotes colorectal tumor growth. Cell Death and Disease, 2021, 12, 199.	2.7	7
112	Dedifferentiation: the return road to repair the intestinal epithelium. Cell Regeneration, 2020, 9, 2.	1.1	7
113	Establishment of porcine and monkey colonic organoids for drug toxicity study. Cell Regeneration, 2021, 10, 32.	1.1	7
114	Fine-tune of intrinsic ERK activity by extrinsic BMP signaling in mouse embryonic stem cells. Protein and Cell, 2012, 3, 401-404.	4.8	6
115	Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor β (TGFβ)-mediated Germ Layer Induction in Xenopus Embryos. Journal of Biological Chemistry, 2015, 290, 17239-17249.	1.6	6
116	Intestinal epithelial plasticity and regeneration via cell dedifferentiation. Cell Regeneration, 2020, 9, 14.	1.1	6
117	Finale: The Last Minutes of Smads. Cell, 2009, 139, 658-660.	13.5	5
118	Posttranslational Modifications of TGF-Î ² Receptors. Methods in Molecular Biology, 2016, 1344, 49-61.	0.4	5
119	DDB1 promotes the proliferation and hypertrophy of chondrocytes during mouse skeleton development. Developmental Biology, 2020, 465, 100-107.	0.9	3
120	The functional switch of TGF-Î ² signaling in breast cancer. Oncotarget, 2019, 10, 1604-1605.	0.8	3
121	ALK-mediated Tyr95 phosphorylation of Smad4 impairs its transcription activity and the tumor suppressive activity of TGF-Î ² . Science China Life Sciences, 2019, 62, 431-432.	2.3	2
122	Non-muscle myosin heavy chain 9 maintains intestinal homeostasis by preventing epithelium necroptosis and colitis adenoma formation. Stem Cell Reports, 2021, 16, 1290-1301.	2.3	2
123	Interaction of stathmin-like 2 protein with the APP intracellular domain. Tsinghua Science and Technology, 2005, 10, 484-488.	4.1	1
124	Molecular Mechanisms Regulating Stem Cells Fate. Journal of Molecular Biology, 2016, 428, 1407-1408.	2.0	1
125	Relaunching of Cell Regeneration. Cell Regeneration, 2019, 8, 31-32.	1.1	1
126	DDB1 maintains intestinal homeostasis by preventing cell cycle arrest. Cell Regeneration, 2022, 11, .	1.1	1

#	Article	IF	CITATIONS
127	Efficient Culture of Intestinal Organoids with Blebbistatin. Methods in Molecular Biology, 2017, 1576, 113-121.	0.4	0