Lei Shu

List of Publications by Citations

Source: https://exaly.com/author-pdf/5602550/lei-shu-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 418 10,310 53 h-index g-index citations papers 13,142 4.5 7.09 494 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
418	Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. <i>IEEE Access</i> , 2018 , 6, 6505-6519	3.5	460
417	A survey on coverage and connectivity issues in wireless sensor networks. <i>Journal of Network and Computer Applications</i> , 2012 , 35, 619-632	7.9	349
416	Security and Privacy in Fog Computing: Challenges. <i>IEEE Access</i> , 2017 , 5, 19293-19304	3.5	302
415	Green Internet of Things for Smart World. <i>IEEE Access</i> , 2015 , 3, 2151-2162	3.5	301
414	Survey of Fog Computing: Fundamental, Network Applications, and Research Challenges. <i>IEEE Communications Surveys and Tutorials</i> , 2018 , 20, 1826-1857	37.1	283
413	Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey. <i>IEEE Communications Surveys and Tutorials</i> , 2020 , 22, 2283-2314	37.1	216
412	. IEEE Access, 2015 , 3, 2687-2699	3.5	187
411	Management and applications of trust in Wireless Sensor Networks: A survey. <i>Journal of Computer and System Sciences</i> , 2014 , 80, 602-617	1	169
410	. IEEE Transactions on Parallel and Distributed Systems, 2015 , 26, 1228-1237	3.7	159
409	. IEEE Transactions on Industrial Informatics, 2017 , 13, 135-143	11.9	149
408	Authentication Protocols for Internet of Things: A Comprehensive Survey. <i>Security and Communication Networks</i> , 2017 , 2017, 1-41	1.9	137
407	. IEEE Communications Magazine, 2014 , 52, 62-69	9.1	132
406	Localization algorithms of Underwater Wireless Sensor Networks: a survey. Sensors, 2012 , 12, 2026-61	3.8	127
405	A Tree-Cluster-Based Data-Gathering Algorithm for Industrial WSNs With a Mobile Sink. <i>IEEE Access</i> , 2015 , 3, 381-396	3.5	122
404	Social Sensor Cloud: Framework, Greenness, Issues, and Outlook. <i>IEEE Network</i> , 2018 , 32, 100-105	11.4	118
403	TPGF: geographic routing in wireless multimedia sensor networks. <i>Telecommunication Systems</i> , 2010 , 44, 79-95	2.3	116
402	Incipient Fault Diagnosis of Roller Bearing Using Optimized Wavelet Transform Based Multi-Speed Vibration Signatures. <i>IEEE Access</i> , 2017 , 5, 19442-19456	3.5	114

401 Internet of Things for Disaster Management: State-of-the-Art and Prospects. IEEE Access, 2017, 5, 18818318835114

400	. IEEE Access, 2020 , 8, 32031-32053	3.5	107
399	Impacts of Deployment Strategies on Localization Performance in Underwater Acoustic Sensor Networks. <i>IEEE Transactions on Industrial Electronics</i> , 2015 , 62, 1725-1733	8.9	106
398	. IEEE Transactions on Industrial Informatics, 2015 , 11, 1607-1616	11.9	104
397	From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 4322-4334	11.9	104
396	Mobile big data fault-tolerant processing for ehealth networks. <i>IEEE Network</i> , 2016 , 30, 36-42	11.4	103
395	. IEEE Sensors Journal, 2016 , 16, 4072-4082	4	96
394	Cross-layer optimized routing in wireless sensor networks with duty cycle and energy harvesting. Wireless Communications and Mobile Computing, 2015, 15, 1957-1981	1.9	93
393	Context-Aware Middleware for Multimedia Services in Heterogeneous Networks. <i>IEEE Intelligent Systems</i> , 2010 , 25, 40-47	4.2	92
392	Trust-Based Communication for the Industrial Internet of Things 2018 , 56, 16-22		91
391	An energy-efficient SDN based sleep scheduling algorithm for WSNs. <i>Journal of Network and Computer Applications</i> , 2016 , 59, 39-45	7.9	89
390	A survey on communication and data management issues in mobile sensor networks. <i>Wireless Communications and Mobile Computing</i> , 2014 , 14, 19-36	1.9	89
389	Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2021 , 8, 718-752	7	89
388	Secure communication for underwater acoustic sensor networks 2015 , 53, 54-60		87
387	. IEEE Transactions on Mobile Computing, 2015 , 14, 2447-2459	4.6	86
386	A Novel Sensory Data Processing Framework to Integrate Sensor Networks With Mobile Cloud. <i>IEEE Systems Journal</i> , 2016 , 10, 1125-1136	4.3	74
385	. IEEE Transactions on Industrial Informatics, 2014 , 10, 784-794	11.9	72
384	. IEEE Wireless Communications, 2016 , 23, 30-36	13.4	71

383	An Energy-Balanced Heuristic for Mobile Sink Scheduling in Hybrid WSNs. <i>IEEE Transactions on Industrial Informatics</i> , 2016 , 12, 28-40	11.9	70
382	. IEEE Access, 2018 , 6, 11349-11364	3.5	68
381	2017 , 55, 24-30		68
380	Path planning using a mobile anchor node based on trilateration in wireless sensor networks. Wireless Communications and Mobile Computing, 2013 , 13, 1324-1336	1.9	67
379	Collaborative Location-Based Sleep Scheduling for Wireless Sensor Networks Integratedwith Mobile Cloud Computing. <i>IEEE Transactions on Computers</i> , 2015 , 64, 1844-1856	2.5	65
378	ZIL: An Energy-Efficient Indoor Localization System Using ZigBee Radio to Detect WiFi Fingerprints. <i>IEEE Journal on Selected Areas in Communications</i> , 2015 , 33, 1431-1442	14.2	64
377	Abnormal event detection in crowded scenes based on deep learning. <i>Multimedia Tools and Applications</i> , 2016 , 75, 14617-14639	2.5	64
376	Distributed Parameter Estimation for Mobile Wireless Sensor Network Based on Cloud Computing in Battlefield Surveillance System. <i>IEEE Access</i> , 2015 , 3, 1729-1739	3.5	63
375	An Efficient Virtual Machine Consolidation Scheme for Multimedia Cloud Computing. <i>Sensors</i> , 2016 , 16, 246	3.8	62
374	A Survey on Smart Agriculture: Development Modes, Technologies, and Security and Privacy Challenges. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2021 , 8, 273-302	7	61
373	Secure 5G Wireless Communications: A Joint Relay Selection and Wireless Power Transfer Approach. <i>IEEE Access</i> , 2016 , 4, 3349-3359	3.5	60
372	Securing parked vehicle assisted fog computing with blockchain and optimal smart contract design. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2020 , 7, 426-441	7	58
371	Towards minimum-delay and energy-efficient flooding in low-duty-cycle wireless sensor networks. <i>Computer Networks</i> , 2018 , 134, 66-77	5.4	58
370	LDPA: a local data processing architecture in ambient assisted living communications 2015 , 53, 56-63		57
369	Geographic multipath routing based on geospatial division in duty-cycled underwater wireless sensor networks. <i>Journal of Network and Computer Applications</i> , 2016 , 59, 4-13	7.9	56
368	A Trust Model Based on Cloud Theory in Underwater Acoustic Sensor Networks. <i>IEEE Transactions on Industrial Informatics</i> , 2017 , 13, 342-350	11.9	56
367	. IEEE Access, 2019 , 7, 4045-4055	3.5	56
366	The Application of DOA Estimation Approach in Patient Tracking Systems with High Patient Density. <i>IEEE Transactions on Industrial Informatics</i> , 2016 , 12, 2353-2364	11.9	54

(2019-2018)

365	A systematic review of data protection and privacy preservation schemes for smart grid communications. <i>Sustainable Cities and Society</i> , 2018 , 38, 806-835	10.1	51
364	Congestion avoidance, detection and alleviation in wireless sensor networks. <i>Journal of Zhejiang University: Science C</i> , 2010 , 11, 63-73		50
363	. IEEE Transactions on Industrial Electronics, 2014 , 61, 6346-6355	8.9	49
362	Two Novel DOA Estimation Approaches for Real-Time Assistant Calibration Systems in Future Vehicle Industrial. <i>IEEE Systems Journal</i> , 2017 , 11, 1361-1372	4.3	48
361	. IEEE Wireless Communications, 2017 , 24, 106-112	13.4	46
360	Intelligent Digital Twin-Based Software-Defined Vehicular Networks. <i>IEEE Network</i> , 2020 , 34, 178-184	11.4	45
359	PD Source Diagnosis and Localization in Industrial High-Voltage Insulation System via Multimodal Joint Sparse Representation. <i>IEEE Transactions on Industrial Electronics</i> , 2016 , 1-1	8.9	45
358	EdgeCare: Leveraging Edge Computing for Collaborative Data Management in Mobile Healthcare Systems. <i>IEEE Access</i> , 2019 , 7, 22011-22025	3.5	45
357	. IEEE Systems Journal, 2017 , 11, 941-950	4.3	44
356	Context-aware cross-layer optimized video streaming in wireless multimedia sensor networks. <i>Journal of Supercomputing</i> , 2010 , 54, 94-121	2.5	44
355	Toward Offering More Useful Data Reliably to Mobile Cloud From Wireless Sensor Network. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2015 , 3, 84-94	4.1	43
354	A Survey on Deployment Algorithms in Underwater Acoustic Sensor Networks. <i>International Journal of Distributed Sensor Networks</i> , 2013 , 9, 314049	1.7	43
353	NetTopo: A framework of simulation and visualization for wireless sensor networks. <i>Ad Hoc Networks</i> , 2011 , 9, 799-820	4.8	43
352	A New Bearing Fault Diagnosis Method Based on Fine-to-Coarse Multiscale Permutation Entropy, Laplacian Score and SVM. <i>IEEE Access</i> , 2019 , 7, 17050-17066	3.5	42
351	Edge Computing-Based Intelligent Manhole Cover Management System for Smart Cities. <i>IEEE Internet of Things Journal</i> , 2018 , 5, 1648-1656	10.7	42
350	. IEEE Access, 2017 , 5, 15300-15307	3.5	41
349	The impacts of mobility models on DV-hop based localization in Mobile Wireless Sensor Networks. <i>Journal of Network and Computer Applications</i> , 2014 , 42, 70-79	7.9	41
348	An Uneven Cluster-Based Mobile Charging Algorithm for Wireless Rechargeable Sensor Networks. <i>IEEE Systems Journal</i> , 2019 , 13, 3747-3758	4.3	41

347	Entropy Measures in Machine Fault Diagnosis: Insights and Applications. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2020 , 69, 2607-2620	5.2	40
346	Energy-efficient cooperative communication for data transmission in wireless sensor networks. <i>IEEE Transactions on Consumer Electronics</i> , 2010 , 56, 2185-2192	4.8	40
345	Industrial Internet of Things-Based Collaborative Sensing Intelligence: Framework and Research Challenges. <i>Sensors</i> , 2016 , 16, 215	3.8	40
344	. IEEE Systems Journal, 2018 , 12, 52-63	4.3	39
343	A Distributed Mobile Fog Computing Scheme for Mobile Delay-Sensitive Applications in SDN-Enabled Vehicular Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 5481-5493	6.8	38
342	Policy and network-based intrusion detection system for IPv6-enabled wireless sensor networks 2014 ,		38
341	. IEEE Transactions on Industrial Electronics, 2015 , 62, 1317-1328	8.9	36
340	Toxic gas boundary area detection in large-scale petrochemical plants with industrial wireless sensor networks 2016 , 54, 22-28		36
339	Parked Vehicle Edge Computing: Exploiting Opportunistic Resources for Distributed Mobile Applications. <i>IEEE Access</i> , 2018 , 6, 66649-66663	3.5	36
338	. IEEE Transactions on Vehicular Technology, 2020 , 69, 9292-9303	6.8	35
338	. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 9292-9303 A Survey of Using Swarm Intelligence Algorithms in IoT. <i>Sensors</i> , 2020 , 20,	6.8 3.8	35
337	A Survey of Using Swarm Intelligence Algorithms in IoT. <i>Sensors</i> , 2020 , 20,		34
337	A Survey of Using Swarm Intelligence Algorithms in IoT. <i>Sensors</i> , 2020 , 20, A Review of Key Issues That Concern the Feasibility of Mobile Cloud Computing 2013 , A Survey on Gas Leakage Source Detection and Boundary Tracking with Wireless Sensor Networks.	3.8	34
337336335	A Survey of Using Swarm Intelligence Algorithms in IoT. <i>Sensors</i> , 2020 , 20, A Review of Key Issues That Concern the Feasibility of Mobile Cloud Computing 2013 , A Survey on Gas Leakage Source Detection and Boundary Tracking with Wireless Sensor Networks. <i>IEEE Access</i> , 2016 , 4, 1700-1715	3.8	34 34 34
337336335334	A Survey of Using Swarm Intelligence Algorithms in IoT. <i>Sensors</i> , 2020 , 20, A Review of Key Issues That Concern the Feasibility of Mobile Cloud Computing 2013 , A Survey on Gas Leakage Source Detection and Boundary Tracking with Wireless Sensor Networks. <i>IEEE Access</i> , 2016 , 4, 1700-1715 Reduced out-of-band radiation-based filter optimization for UFMC systems in 5G 2015 , IDSEP: a novel intrusion detection scheme based on energy prediction in cluster-based wireless	3.8 3.5	34343433
337336335334333	A Survey of Using Swarm Intelligence Algorithms in IoT. <i>Sensors</i> , 2020 , 20, A Review of Key Issues That Concern the Feasibility of Mobile Cloud Computing 2013 , A Survey on Gas Leakage Source Detection and Boundary Tracking with Wireless Sensor Networks. <i>IEEE Access</i> , 2016 , 4, 1700-1715 Reduced out-of-band radiation-based filter optimization for UFMC systems in 5G 2015 , IDSEP: a novel intrusion detection scheme based on energy prediction in cluster-based wireless sensor networks. <i>IET Information Security</i> , 2013 , 7, 97-105 A Collaborative Secure Localization Algorithm Based on Trust Model in Underwater Wireless Sensor	3.8	3434343333

329	A Distance-based Energy Aware Routing algorithm for wireless sensor networks. <i>Sensors</i> , 2010 , 10, 9493	335811	32
328	Outlier detection and countermeasure for hierarchical wireless sensor networks. <i>IET Information Security</i> , 2010 , 4, 361	1.4	32
327	. IEEE Transactions on Vehicular Technology, 2020 , 69, 3166-3178	6.8	32
326	BRTCO: A Novel Boundary Recognition and Tracking Algorithm for Continuous Objects in Wireless Sensor Networks. <i>IEEE Systems Journal</i> , 2018 , 12, 2056-2065	4.3	31
325	The insights of message delivery delay in VANETs with a bidirectional traffic model. <i>Journal of Network and Computer Applications</i> , 2013 , 36, 1287-1294	7.9	31
324	The Performance Evaluation of Blockchain-based Security and Privacy Systems for the Internet of Things: A Tutorial. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	31
323	Optimization Algorithms for Multiaccess Green Communications in Internet of Things. <i>IEEE Internet of Things Journal</i> , 2018 , 5, 1739-1748	10.7	30
322	Multi-priority Multi-path Selection for Video Streaming in Wireless Multimedia Sensor Networks. <i>Lecture Notes in Computer Science</i> , 2008 , 439-452	0.9	30
321	. IEEE Systems Journal, 2018 , 12, 1518-1530	4.3	29
320	Path-Loss-Based Fingerprint Localization Approach for Location-Based Services in Indoor Environments. <i>IEEE Access</i> , 2017 , 5, 13756-13769	3.5	29
319	Software Defined Architecture for VANET: A Testbed Implementation with Wireless Access Management 2017 , 55, 135-141		28
318	A mobile anchor assisted localization algorithm based on regular hexagon in wireless sensor networks. <i>Scientific World Journal, The</i> , 2014 , 2014, 219371	2.2	28
317	. IEEE Systems Journal, 2018 , 12, 2509-2523	4.3	27
316	Rice blast recognition based on principal component analysis and neural network. <i>Computers and Electronics in Agriculture</i> , 2018 , 154, 482-490	6.5	27
315	Deep Learning-Based Intrusion Detection for Distributed Denial of Service Attack in Agriculture 4.0. <i>Electronics (Switzerland)</i> , 2021 , 10, 1257	2.6	26
314	BLTM: Beta and LQI Based Trust Model for Wireless Sensor Networks. <i>IEEE Access</i> , 2019 , 7, 43679-43690)3.5	25
313	A balanced energy consumption sleep scheduling algorithm in wireless sensor networks 2011 ,		25
312	LMAT: Localization with a Mobile Anchor Node Based on Trilateration in Wireless Sensor Networks 2011 ,		25

311	. IEEE Access, 2016 , 4, 5374-5384	3.5	25
310	Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning. <i>Reliability Engineering and System Safety</i> , 2021 , 215, 107938	6.3	25
309	An energy-efficient clustered distributed coding for large-scale wireless sensor networks. <i>Journal of Supercomputing</i> , 2013 , 66, 649-669	2.5	24
308	A Path Planning Scheme for AUV Flock-Based Internet-of-Underwater-Things Systems to Enable Transparent and Smart Ocean. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 9760-9772	10.7	24
307	. IEEE Transactions on Cloud Computing, 2020 , 8, 1018-1029	3.3	23
306	. IEEE Transactions on Vehicular Technology, 2020 , 69, 3217-3230	6.8	22
305	A Review of Plant Phenotypic Image Recognition Technology Based on Deep Learning. <i>Electronics</i> (Switzerland), 2021 , 10, 81	2.6	22
304	. IEEE Internet of Things Journal, 2020 , 7, 9623-9636	10.7	21
303	. IEEE Systems Journal, 2016 , 10, 1402-1411	4.3	21
302	Transmitting streaming data in wireless multimedia sensor networks with holes 2007,		21
302	Transmitting streaming data in wireless multimedia sensor networks with holes 2007, Energy-Efficient Event Determination in Underwater WSNs Leveraging Practical Data Prediction. IEEE Transactions on Industrial Informatics, 2017, 13, 1238-1248	11.9	21
	Energy-Efficient Event Determination in Underwater WSNs Leveraging Practical Data Prediction.	11.9	
301	Energy-Efficient Event Determination in Underwater WSNs Leveraging Practical Data Prediction. IEEE Transactions on Industrial Informatics, 2017, 13, 1238-1248 A DOA Estimation Approach for Transmission Performance Guarantee in D2D Communication.		20
301	Energy-Efficient Event Determination in Underwater WSNs Leveraging Practical Data Prediction. IEEE Transactions on Industrial Informatics, 2017, 13, 1238-1248 A DOA Estimation Approach for Transmission Performance Guarantee in D2D Communication. Mobile Networks and Applications, 2017, 22, 998-1009 Efficient medium access control for cyberphysical systems with heterogeneous networks. IEEE	2.9	20
301 300 299	Energy-Efficient Event Determination in Underwater WSNs Leveraging Practical Data Prediction. IEEE Transactions on Industrial Informatics, 2017, 13, 1238-1248 A DOA Estimation Approach for Transmission Performance Guarantee in D2D Communication. Mobile Networks and Applications, 2017, 22, 998-1009 Efficient medium access control for cyberphysical systems with heterogeneous networks. IEEE Systems Journal, 2015, 9, 22-30 Beacon Synchronization and Duty-Cycling in IEEE 802.15.4 Cluster-Tree Networks: A Review. IEEE	2.9	20 20 20
301 300 299 298	Energy-Efficient Event Determination in Underwater WSNs Leveraging Practical Data Prediction. IEEE Transactions on Industrial Informatics, 2017, 13, 1238-1248 A DOA Estimation Approach for Transmission Performance Guarantee in D2D Communication. Mobile Networks and Applications, 2017, 22, 998-1009 Efficient medium access control for cyberphysical systems with heterogeneous networks. IEEE Systems Journal, 2015, 9, 22-30 Beacon Synchronization and Duty-Cycling in IEEE 802.15.4 Cluster-Tree Networks: A Review. IEEE Internet of Things Journal, 2018, 5, 1765-1788 Poster abstract: Traffic flow prediction with big data: A deep learning based time series model	2.9 4·3	20 20 20 20
301 300 299 298 297	Energy-Efficient Event Determination in Underwater WSNs Leveraging Practical Data Prediction. IEEE Transactions on Industrial Informatics, 2017, 13, 1238-1248 A DOA Estimation Approach for Transmission Performance Guarantee in D2D Communication. Mobile Networks and Applications, 2017, 22, 998-1009 Efficient medium access control for cyber\(\bar{p}\)hysical systems with heterogeneous networks. IEEE Systems Journal, 2015, 9, 22-30 Beacon Synchronization and Duty-Cycling in IEEE 802.15.4 Cluster-Tree Networks: A Review. IEEE Internet of Things Journal, 2018, 5, 1765-1788 Poster abstract: Traffic flow prediction with big data: A deep learning based time series model 2017,	2.9 4·3	20 20 20 20 20

(2020-2016)

293	TGM-COT: energy-efficient continuous object tracking scheme with two-layer grid model in wireless sensor networks. <i>Personal and Ubiquitous Computing</i> , 2016 , 20, 349-359	2.1	20
292	An Experimental Study of Clogging Fault Diagnosis in Heat Exchangers Based on Vibration Signals. <i>IEEE Access</i> , 2016 , 4, 1800-1809	3.5	19
291	A Scheme on Indoor Tracking of Ship Dynamic Positioning Based on Distributed Multi-Sensor Data Fusion. <i>IEEE Access</i> , 2017 , 5, 379-392	3.5	19
290	. IEEE Access, 2020 , 8, 76300-76312	3.5	19
289	. IEEE/CAA Journal of Automatica Sinica, 2021 , 8, 1477-1499	7	19
288	Sleep Scheduling for Unbalanced Energy Harvesting in Industrial Wireless Sensor Networks. <i>IEEE Communications Magazine</i> , 2019 , 57, 108-115	9.1	18
287	Energy harvesting communications: Part 1 [Guest Editorial] 2015 , 53, 68-69		18
286	Trust assistance in Sensor-Cloud 2015 ,		18
285	Internet of Things for Noise Mapping in Smart Cities: State of the Art and Future Directions. <i>IEEE Network</i> , 2020 , 34, 112-118	11.4	18
284	. IEEE Internet of Things Journal, 2020 , 7, 7345-7356	10.7	18
283	Reality mining: A prediction algorithm for disease dynamics based on mobile big data. <i>Information Sciences</i> , 2017 , 379, 82-93	7.7	18
282	A Genetic Algorithm Approach to Multi-Agent Itinerary Planning in Wireless Sensor Networks. <i>Mobile Networks and Applications</i> , 2011 , 16, 782-793	2.9	18
281	. IEEE Internet of Things Journal, 2020 , 7, 8012-8024	10.7	18
280	. IEEE Transactions on Vehicular Technology, 2020 , 69, 9031-9040	6.8	17
279	Energy-Efficient Barrier Coverage With Probabilistic Sensors in Wireless Sensor Networks. <i>IEEE Sensors Journal</i> , 2020 , 20, 5624-5633	4	17
278	A cross-layer duty cycle MAC protocol supporting a pipeline feature for wireless sensor networks. <i>Sensors</i> , 2011 , 11, 5183-201	3.8	17
277	Hyperspectral Image Classification With Stacking Spectral Patches and Convolutional Neural Networks. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2018 , 56, 5975-5984	8.1	17
276	LDC: A lightweight dada consensus algorithm based on the blockchain for the industrial Internet of Things for smart city applications. <i>Future Generation Computer Systems</i> , 2020 , 108, 574-582	7.5	16

275	Chaotic direct-sequence spread-spectrum with variable symbol period: A technique for enhancing physical layer security. <i>Computer Networks</i> , 2016 , 109, 4-12	5.4	16
274	Transmitting and Gathering Streaming Data in Wireless Multimedia Sensor Networks Within Expected Network Lifetime. <i>Mobile Networks and Applications</i> , 2008 , 13, 306	2.9	16
273	. IEEE Systems Journal, 2017 , 11, 1340-1350	4.3	15
272	Dynamically Weighted Load Evaluation Method Based on Self-adaptive Threshold in Cloud Computing. <i>Mobile Networks and Applications</i> , 2017 , 22, 4-18	2.9	15
271	Energy-aware rate and description allocation optimized video streaming for mobile D2D communications 2015 ,		15
270	An SDN Architecture for AUV-Based Underwater Wireless Networks to Enable Cooperative Underwater Search. <i>IEEE Wireless Communications</i> , 2020 , 27, 132-139	13.4	15
269	Contention-based geographic forwarding in asynchronous duty-cycled wireless sensor networks. <i>International Journal of Communication Systems</i> , 2012 , 25, 1585-1602	1.7	15
268	A Two-Step Secure Localization for Wireless Sensor Networks. <i>Computer Journal</i> , 2013 , 56, 1154-1166	1.3	15
267	Joint Replication Density and Rate Allocation Optimization for VoD Systems Over Wireless Mesh Networks. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2013 , 23, 1260-1273	6.4	15
266	A New Hybrid Network Traffic Prediction Method 2010 ,		15
265	P-MAC: A Cross-Layer Duty Cycle MAC Protocol Towards Pipelining for Wireless Sensor Networks 2011 ,		15
264	NetTopo: Beyond Simulator and Visualizer for Wireless Sensor Networks 2008,		15
263	. IEEE Access, 2020 , 8, 87529-87540	3.5	15
262	BP neural network based continuous objects distribution detection in WSNs. <i>Wireless Networks</i> , 2016 , 22, 1917-1929	2.5	14
261	Energy harvesting communications: Part 2 [Guest Editorial] 2015 , 53, 54-55		14
260	GA-MIP: Genetic algorithm based multiple Mobile Agents itinerary planning in wireless sensor networks 2010 ,		14
259	A Partition-Based Node Deployment Strategy in Solar Insecticidal Lamps Internet of Things. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 11223-11237	10.7	14

257	Intrusion Detection Algorithm Based on Neighbor Information Against Sinkhole Attack in Wireless Sensor Networks. <i>Computer Journal</i> , 2015 , 58, 1280-1292	1.3	13	
256	A Mechanism Filling Sensing Holes for Detecting the Boundary of Continuous Objects in Hybrid Sparse Wireless Sensor Networks. <i>IEEE Access</i> , 2017 , 5, 7922-7935	3.5	12	
255	MANCL: a multi-anchor nodes collaborative localization algorithm for underwater acoustic sensor networks. <i>Wireless Communications and Mobile Computing</i> , 2016 , 16, 682-702	1.9	12	
254	A Novel Two-Tier Cooperative Caching Mechanism for the Optimization of Multi-Attribute Periodic Queries in Wireless Sensor Networks. <i>Sensors</i> , 2015 , 15, 15033-66	3.8	12	
253	A Survey on Energy Harvesting and Integrated Data Sharing in Wireless Body Area Networks. <i>International Journal of Distributed Sensor Networks</i> , 2015 , 2015, 1-17	1.7	12	
252	. IEEE Access, 2021 , 9, 138509-138542	3.5	12	
251	Efficient Workload Allocation and User-Centric Utility Maximization for Task Scheduling in Collaborative Vehicular Edge Computing. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 70, 3773-378	1 6.8	12	
250	. IEEE Transactions on Emerging Topics in Computing, 2020 , 8, 137-147	4.1	12	
249	. IEEE Access, 2018 , 6, 62371-62383	3.5	12	
248	Cache-Aware Query Optimization in Multiapplication Sharing Wireless Sensor Networks. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2018 , 48, 401-417	7.3	11	
247	Locating in Crowdsourcing-Based DataSpace: Wireless Indoor Localization without Special Devices. <i>Mobile Networks and Applications</i> , 2014 , 19, 534-542	2.9	11	
246	Self-adaptive fault diagnosis of roller bearings using infrared thermal images 2017,		11	
245	A geographic routing oriented sleep scheduling algorithm in duty-cycled sensor networks 2012,		11	
244	Towards a semantic infrastructure for context-aware e-learning. <i>Multimedia Tools and Applications</i> , 2010 , 47, 71-86	2.5	11	
243	Power-Aware and Reliable Sensor Selection Based on Trust for Wireless Sensor Networks. <i>Journal of Communications</i> , 2010 , 5,	0.5	11	
242	Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems. <i>Sensors</i> , 2016 , 16,	3.8	11	
241	Heuristic Optimization for Reliable Data Congestion Analytics in Crowdsourced eHealth Networks. <i>IEEE Access</i> , 2016 , 4, 9174-9183	3.5	11	
240	When Sensor-Cloud Meets Mobile Edge Computing. <i>Sensors</i> , 2019 , 19,	3.8	11	

239	High Voltage Discharge Exhibits Severe Effect on ZigBee-Based Device in Solar Insecticidal Lamps Internet of Things. <i>IEEE Wireless Communications</i> , 2020 , 27, 140-145	13.4	10
238	Outlier Detection Approaches Based on Machine Learning in the Internet-of-Things. <i>IEEE Wireless Communications</i> , 2020 , 27, 53-59	13.4	10
237	. IEEE Access, 2020 , 8, 15907-15922	3.5	10
236	Performance Analysis of Cyclic Prefixed Single-Carrier Spectrum Sharing Relay Systems in Primary User Interference. <i>IEEE Transactions on Signal Processing</i> , 2012 , 60, 6729-6734	4.8	10
235	Impacts of duty-cycle on TPGF geographical multipath routing in wireless sensor networks 2010,		10
234	Intra-mobility handover enhancement in healthcare wireless sensor networks 2012,		10
233	An Energy-Efficient CKN Algorithm for Duty-Cycled Wireless Sensor Networks. <i>International Journal of Distributed Sensor Networks</i> , 2012 , 8, 106439	1.7	10
232	MCTE: Minimizes Task Completion Time and Execution Cost to Optimize Scheduling Performance for Smart Grid Cloud. <i>IEEE Access</i> , 2019 , 7, 134793-134803	3.5	9
231	eBPlatform: An IoT-based system for NCD patients homecare in China 2014 ,		9
230	Biometrics for securing mobile payments: Benefits, challenges and solutions 2013,		9
229	Image encryption using block based transformation with fractional Fourier transform 2013,		9
228	Verifying mediated service interactions considering expected behaviours. <i>Journal of Network and Computer Applications</i> , 2011 , 34, 1043-1053	7.9	9
227	A fairness-aware smart parking scheme aided by parking lots 2012 ,		9
226	Boundary Tracking of Continuous Objects Based on Binary Tree Structured SVM for Industrial Wireless Sensor Networks. <i>IEEE Transactions on Mobile Computing</i> , 2020 , 1-1	4.6	9
225	A Novel Class Noise Detection Method for High-Dimensional Data in Industrial Informatics. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 2181-2190	11.9	9
224	Position-based adaptive quantization for target location estimation in wireless sensor networks using one-bit data. <i>Wireless Communications and Mobile Computing</i> , 2016 , 16, 929-941	1.9	9
223	. IEEE Internet of Things Journal, 2021 , 8, 13095-13114	10.7	9
222	BTDGS: Binary-Tree based Data Gathering Scheme with Mobile Sink for Wireless Multimedia Sensor Networks. <i>Mobile Networks and Applications</i> , 2015 , 20, 604-622	2.9	8

221	A Short Review on Sleep Scheduling Mechanism in Wireless Sensor Networks. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2018 , 66-70	0.2	8
220	An efficient and low cost Windows Mobile BSN monitoring system based on TinyOS. <i>Telecommunication Systems</i> , 2014 , 55, 115-124	2.3	8
219	Parameter optimisation in duty-cycled wireless sensor networks under expected network lifetime. <i>International Journal of Ad Hoc and Ubiquitous Computing</i> , 2014 , 15, 57	0.7	8
218	Preliminary exploration: Fault diagnosis of the circulating-water heat exchangers based on sound sensor and non-destructive testing technique 2013 ,		8
217	An Empirical Study of a Chinese Online Social NetworkRenren. Computer, 2013, 46, 78-84	1.6	8
216	MCRA: A Multi-Charger Cooperation Recharging Algorithm Based on Area Division for WSNs. <i>IEEE Access</i> , 2017 , 5, 15380-15389	3.5	8
215	An Adaptive Framework for Improving Quality of Service in Industrial Systems. <i>IEEE Access</i> , 2015 , 3, 2	129 ₅ 2 ₅ 13	98
214	Bandwidth-adaptive application partitioning for execution time and energy optimization 2013,		8
213	A cooperation scheme based on reputation for opportunistic networks 2013,		8
212	Geographic routing in random duty-cycled wireless multimedia sensor networks 2010,		8
211	On multipath balancing and expanding for wireless multimedia sensor networks. <i>International Journal of Ad Hoc and Ubiquitous Computing</i> , 2012 , 9, 95	0.7	8
210	A New Energy Prediction Approach for Intrusion Detection in Cluster-Based Wireless Sensor Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012 , 1-12	0.2	8
209	A Review on Design and Implementation of Software-Defined WLANs. <i>IEEE Systems Journal</i> , 2020 , 14, 2601-2614	4.3	8
208	INBS: An Improved Naive Bayes Simple learning approach for accurate indoor localization 2014,		7
207	Performance evaluation of a cooperative reputation system for vehicular delay-tolerant networks. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2014 , 2014,	3.2	7
206	A fog computing-based framework to reduce traffic overhead in large-scale industrial applications 2017 ,		7
205	Implementing top-k query in duty-cycled wireless sensor networks 2011,		7
204	The new challenge: mobile multimedia sensor networks. <i>International Journal of Multimedia Intelligence and Security</i> , 2011 , 2, 107	0.4	7

203	2008,		7
202	Coverage-Driven Self-Deployment for Cluster Based Mobile Sensor Networks 2006 ,		7
201	Research issues on mobile sensor networks 2010 ,		7
200	Demo Abstract: High Voltage Discharge Exhibits Severe Effect on ZigBee-based Device in Solar Insecticidal Lamps Internet of Things 2020 ,		7
199	Improved Coverage and Connectivity via Weighted Node Deployment in Solar Insecticidal Lamp Internet of Things. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 10170-10186	10.7	7
198	A Sensitive Secondary Users Selection Algorithm for Cognitive Radio Ad Hoc Networks. <i>Sensors</i> , 2016 , 16, 445	3.8	7
197	2016,		7
196	Optimal and Elastic Energy Trading for Green Microgrids: a two-Layer Game Approach. <i>Mobile Networks and Applications</i> , 2019 , 24, 950-961	2.9	7
195	. IEEE Systems Journal, 2021 , 1-12	4.3	7
194	Multi-Target Intense Human Motion Analysis and Detection Using Channel State Information. <i>Sensors</i> , 2018 , 18,	3.8	7
193	Sleep scheduling in wireless powered industrial wireless sensor networks 2017,		6
192	A Survivability Clustering Algorithm for Ad Hoc Network Based on a Small-World Model. <i>Wireless Personal Communications</i> , 2015 , 84, 1835-1854	1.9	6
191	A smart helmet for network level early warning in large scale petrochemical plants 2015,		6
190	. IEEE Network, 2020 , 34, 121-127	11.4	6
189	CII: A Light-Weight Mechanism for ZigBee Performance Assurance under WiFi Interference 2016 ,		6
188	Poster Abstract: DeGas - Toxic Gas Boundary Area Detection in Industrial Wireless Sensor Networks 2016 ,		6
187	Evolution of Social Networks Based on Tagging Practices. <i>IEEE Transactions on Services Computing</i> , 2013 , 6, 252-261	4.8	6
186	Pricing Models for Sensor-Cloud 2015 ,		6

185	Energy harvesting communications: Part III [Guest Editorial] 2015 , 53, 90-91		6
184	An evaluation of user importance when integrating social networks and mobile cloud computing 2014 ,		6
183	A proportional fairness backoff scheme for funnelling effect in wireless sensor networks. Transactions on Emerging Telecommunications Technologies, 2012 , 23, 585-597	9	6
182	A reputation system to identify and isolate selfish nodes in Vehicular Delay-Tolerant Networks 2013 ,		6
181	The Insights of DV-Based Localization Algorithms in the Wireless Sensor Networks with Duty-Cycled and Radio Irregular Sensors 2011 ,		6
180	SMAC-based proportional fairness backoff scheme in wireless sensor networks 2010 ,		6
179	NetViewer: A Universal Visualization Tool for Wireless Sensor Networks 2010,		6
178	Secured energy-aware sleep scheduling algorithm in duty-cycled sensor networks 2012,		6
177	Vibration Sensor Based Intelligent Fault Diagnosis System for Large Machine Unit in Petrochemical Industries. <i>International Journal of Distributed Sensor Networks</i> , 2015 , 11, 239405	7	6
176	Routing Protocols in Underwater Acoustic Sensor Networks: A Quantitative Comparison. International Journal of Distributed Sensor Networks, 2015 , 2015, 1-11	7	6
175	RPR: recommendation for passengers by roads based on cloud computing and taxis traces data. Personal and Ubiquitous Computing, 2016 , 20, 337-347	1	6
174	Cloud-based Data-intensive Framework towards fault diagnosis in large-scale petrochemical plants 2016 ,		6
173	Data Collection Middleware for Crowdsourcing-based Industrial Sensing Intelligence 2015,		5
172	A Cloud Resource Evaluation Model Based on Entropy Optimization and Ant Colony Clustering. **Computer Journal*, 2015 , 58, 1254-1266	3	5
171	Optimal Design of Beacon Array for Long Baseline Positioning System Used in Manned Deep-Sea Submersibles. <i>IEEE Access</i> , 2019 , 7, 140411-140420	5	5
170	A case study: Monitoring heat exchanger based on vibration sensors and nondestructive testing technique 2013 ,		5
169	Adaptive Duty Cycling in IEEE 802.15.4 Cluster Tree Networks Using MAC Parameters 2017 ,		5
168	Performance analysis of cooperative spatial multiplexing networks with AF/DF relaying and linear receiver over Rayleigh fading channels. <i>Wireless Communications and Mobile Computing</i> , 2015 , 15, 500-509	9	5

167	Solving network isolation problem in duty-cycled wireless sensor networks 2013,		5
166	Skewness-aware clustering tree for unevenly distributed spatial sensor nodes in smart city. <i>International Journal of Communication Systems</i> , 2013 , 26, 1143-1162	1.7	5
165	A Geographic Routing Algorithm in Duty-Cycled Sensor Networks with Mobile Sinks 2011,		5
164	End-to-end connectivity IPv6 over wireless sensor networks 2011 ,		5
163	Residual Time Aware Forwarding for Randomly Duty-Cycled Wireless Sensor Networks 2009,		5
162	Cross-Layer Design for Video Replication Strategy over Multihop Wireless Networks 2011 ,		5
161	Physical Security and Safety of IoT Equipment: A Survey of Recent Advances and Opportunities. <i>IEEE Transactions on Industrial Informatics</i> , 2022 , 1-1	11.9	5
160	Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2022 , 9, 407-436	7	5
159	2016,		5
158	ArvaNet: Deep Recurrent Architecture for PPG-Based Negative Mental-State Monitoring. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 8, 179-190	4.5	5
157	An improved spray and wait algorithm based on RVNS in Delay Tolerant Mobile Sensor Networks 2015 ,		4
156	On lifetime enhancement of dynamic wireless sensor networks with energy-harvesting sensors 2016 ,		4
155	Achieving optimal admission control with dynamic scheduling in energy constrained network systems. <i>Journal of Network and Computer Applications</i> , 2014 , 44, 152-160	7.9	4
154	Adaptive transmission in MIMO AF relay networks with orthogonal space-time block codes over Nakagami-m fading. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2012 , 2012,	3.2	4
153	A Resource Evaluation Model Based on Entropy Optimization Toward Green Cloud 2013,		4
152	. IEEE Access, 2017 , 5, 11236-11243	3.5	4
151	A MapReduce-Based Ensemble Learning Method with Multiple Classifier Types and Diversity for Condition-Based Maintenance with Concept Drifts. <i>IEEE Cloud Computing</i> , 2017 , 4, 38-48		4
150	NECAS: Near field communication system for smartphones based on visible light 2014 ,		4

149	A two-hop localization scheme with radio irregularity model in Wireless Sensor Networks 2012,		4
148	Assessing the replaceability of service protocols in mediated service interactions. <i>Future Generation Computer Systems</i> , 2013 , 29, 287-299	7.5	4
147	Detecting Sybil attack based on state information in Underwater Wireless Sensor Networks 2013,		4
146	Geographic Multipath Routing in Duty-Cycled Wireless Sensor Networks with Energy Harvesting 2013 ,		4
145	Removing Heavily Curved Path: Improved DV-hop Localization in Anisotropic Sensor Networks 2011 ,		4
144	Cross-Layer Optimized Data Gathering in Wireless Multimedia Sensor Networks 2009,		4
143	A Survey on Fault-Tolerance in Distributed Network Systems 2009,		4
142	A Task Allocation Algorithm Based on Score Incentive Mechanism for Wireless Sensor Networks. <i>International Journal of Distributed Sensor Networks</i> , 2015 , 11, 286589	1.7	4
141	A Multi-sensor Information Fusion Method for High Reliability Fault Diagnosis of Rotating Machinery. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2021 , 1-1	5.2	4
140	Understanding the impact of network structure on propagation dynamics based on mobile big data 2016 ,		4
139	Cooperative Secondary Users selection in Cognitive Radio Ad Hoc Networks 2016,		4
138	Edge Permutation Entropy: An Improved Entropy Measure for Time-Series Analysis 2019,		4
137	STC: an intelligent trash can system based on both NB-IoT and edge computing for smart cities. <i>Enterprise Information Systems</i> , 2020 , 14, 1422-1438	3.5	4
136	. IEEE Internet of Things Journal, 2021 , 8, 2354-2363	10.7	4
135	. IEEE Transactions on Industrial Informatics, 2018 , 14, 4481-4486	11.9	4
134	Understanding the impact of planarized proximity graphs on toxic gas boundary area detection 2017 ,		3
133	WIFI-based smart car for toxic gas monitoring in large-scale petrochemical plants 2015,		3
132	. IEEE Transactions on Vehicular Technology, 2020 , 69, 3412-3423	6.8	3

131	Design of a low control-flow overhead-based software-defined wireless sensor network with link failure 2017 ,		3
130	A Short Survey on Fault Diagnosis in Wireless Sensor Networks. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2018 , 21-26	0.2	3
129	Real-time big data analytics for multimedia transmission and storage 2016,		3
128	Impact of Fouling on Flow-Induced Vibration Characteristics in Fluid-Conveying Pipelines. <i>IEEE Access</i> , 2016 , 4, 6631-6644	3.5	3
127	Guest Editorial Special Issue on Advances in Underwater Acoustic Sensor Networks. <i>IEEE Sensors Journal</i> , 2016 , 16, 3994-3994	4	3
126	When mobile crowd sensing meets smart agriculture 2019 ,		3
125	A novel approach for spectrum mobility games with priority in Cognitive Radio networks 2014 ,		3
124	Touchware: a software-based technique for high-resolution multi-touch sensing devices. <i>International Journal of Ad Hoc and Ubiquitous Computing</i> , 2014 , 17, 18	0.7	3
123	Sleep scheduling for critical nodes in group-based industrial wireless sensor networks 2017,		3
122	Energy utilization concerned sleep scheduling in Wireless Powered Communication Networks 2017,		3
121	WSNs-Based Mechanical Equipment State Monitoring and Fault Diagnosis in China. <i>International Journal of Distributed Sensor Networks</i> , 2015 , 11, 528464	1.7	3
120	Joint Power and Reduced Spectral Leakage-Based Resource Allocation for D2D Communications in 5G. <i>Lecture Notes in Computer Science</i> , 2015 , 244-258	0.9	3
119	A harvesting-rate oriented self-adaptive algorithm in Energy-Harvesting Wireless Body Area Networks 2015 ,		3
118	An improved congestion control algorithm based on social awareness in Delay Tolerant Networks 2014 ,		3
117	UPMAC: A localized load-adaptive MAC protocol for underwater acoustic networks 2014,		3
116	WX-MAC: An Energy Efficient MAC Protocol for Wireless Sensor Networks 2013,		3
115	Locating using prior information 2013,		3
114	Poster abstract 2013 ,		3

(2020-2013)

113	Performance evaluation of DV-hop localization algorithm with mobility models for Mobile Wireless Sensor Networks 2013 ,		3
112	An efficient approach of secure group association management in densely deployed heterogeneous distributed sensor network. <i>Security and Communication Networks</i> , 2011 , 4, 1013-1026	1.9	3
111	Secured Two Phase Geographic Forwarding Protocol in Wireless Multimedia Sensor Networks 2010 ,		3
110	Reliable broadcast transmission in wireless networks based on network coding 2011 ,		3
109	A novel secure localization scheme against collaborative collusion in wireless sensor networks 2011 ,		3
108	Sleep scheduling towards geographic routing in duty-cycled sensor networks with a mobile sink 2011 ,		3
107	A Remote Monitoring System of IDC Room Based on ZigBee Wireless Sensor Networks 2009,		3
106	An embedded VDTN testbed for the evaluation of vehicular safety systems 2011,		3
105	A mobile core-body temperature monitoring system on Android 2010 ,		3
104	The Development of a Realistic Simulation Framework with OMNeT++ 2008,		3
103	A Robust Security Framework based on Blockchain and SDN for Fog Computing enabled Agricultural Internet of Things 2020 ,		3
102	Locating using prior information. Computer Communication Review, 2013, 43, 463-464	1.4	3
101	Facilities Collaboration in Cloud Manufacturing based on Generalized Collaboration Network 2015,		3
100	A Survey on Sensor Deployment in Underwater Sensor Networks. <i>Communications in Computer and Information Science</i> , 2014 , 133-143	0.3	3
99	. IEEE Access, 2020 , 8, 210035-210040	3.5	3
98	Poster Abstract: Insecticidal Performance Simulation of Solar Insecticidal Lamps Internet of Things Using the Number of Falling Edge Trigger 2021 ,		3
97	SMPKR: Search Engine for Internet of Things. <i>IEEE Access</i> , 2019 , 7, 163615-163625	3.5	3
96	. IEEE Transactions on Industrial Informatics, 2020 , 16, 1993-2002	11.9	3

95	Optimal Deployment for Target-Barrier Coverage Problems in Wireless Sensor Networks. <i>IEEE Systems Journal</i> , 2021 , 15, 2241-2244	4.3	3
94	Low Cost Sensor to Measure Solid Concentrations in Wastewater 2018 ,		3
93	Fine-to-Coarse Multiscale Permutation Entropy for Rolling Bearing Fault Diagnosis 2018,		3
92	Relay Shift Based Self-deployment for Mobility Limited Sensor Networks. <i>Lecture Notes in Computer Science</i> , 2006 , 556-564	0.9	3
91	Prolonging global connectivity in group-based industrial wireless sensor networks 2017,		2
90	IEEE Access Special Section Editorial: Wirelessly Powered Networks: Algorithms, Applications, and Technologies. <i>IEEE Access</i> , 2019 , 7, 18994-19001	3.5	2
89	Two-Hop Geographic Multipath Routing in Duty-cycled Wireless Sensor Networks. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2013 , 155-10	66 ^{0.2}	2
88	A Cross-Layer Protocol with High Reliability and Low Delay for Underwater Acoustic Sensor Networks. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2017 , 377-386	0.2	2
87	Lightweight flow management for software-defined wireless sensor networks with link fault in data plane 2017 ,		2
86	Dynamic adaptation of duty cycling with MAC parameters in cluster tree IEEE 802.15.4 networks 2017 ,		2
85	An Energy Efficient Routing Protocol for Underwater WSNs 2015,		2
84	Designing Wireless Vibration Monitoring System for Petrochemical Units Fault Diagnosis 2015 ,		2
83	A venues-aware message routing scheme for delay-tolerant networks. <i>Wireless Communications and Mobile Computing</i> , 2015 , 15, 1695-1710	1.9	2
82	Gatewaying the Wireless Sensor Networks 2013 ,		2
81	Energy-Efficient Routing Algorithms Based on OVSF Code and Priority in Clustered Wireless Sensor Networks. <i>International Journal of Distributed Sensor Networks</i> , 2013 , 9, 620945	1.7	2
80	Vibration sensor based intelligent fault diagnosis system for large machine unit in petrochemical industry 2013 ,		2
79	A backoff copying scheme for contention resolution in wireless sensor networks 2009,		2
78	Reward oriented packet filtering algorithm for wireless sensor networks. <i>Wireless Communications and Mobile Computing</i> , 2009 , 9, 369-382	1.9	2

77	Bit allocation for multi-source multi-path P2P video streaming in VoD systems over wireless mesh networks 2012 ,		2
76	FoSSicker: A personalized search engine by location-awareness 2012,		2
75	A Compensation-Based Reliable Data Delivery for Instant Wireless Sensor Network 2009,		2
74	A Fast Formation Flocking Scheme for a Group of Interactive Distributed Mobile Nodes in Autonomous Networks. <i>Mobile Networks and Applications</i> , 2010 , 15, 477-487	2.9	2
73	Soybean Yield Preharvest Prediction Based on Bean Pods and Leaves Image Recognition Using Deep Learning Neural Network Combined With GRNN <i>Frontiers in Plant Science</i> , 2021 , 12, 791256	6.2	2
72	UAV Assisted Sleep Scheduling Algorithm for Energy-Efficient Data Collection in Agricultural Internet of Things. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	2
71	Impacts of Radio Irregularity on Duty-Cycled Industrial Wireless Sensor Networks. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2017 , 29-38	0.2	2
70	Abnormal Event Detection Based on Saliency Information. <i>International Journal of Multimedia and Ubiquitous Engineering</i> , 2015 , 10, 339-352	Ο	2
69	HMF: Heatmap and WiFi Fingerprint-Based Indoor Localization with Building Layout Consideration 2016 ,		2
68	Predictive Boundary Tracking based on Motion Behavior Learning for Continuous Objects in Industrial Wireless Sensor Networks. <i>IEEE Transactions on Mobile Computing</i> , 2021 , 1-1	4.6	2
67	Application of Histogram Equalization for Image Enhancement in Corrosion Areas. <i>Shock and Vibration</i> , 2021 , 2021, 1-13	1.1	2
66	Localized Energy-Aware Broadcast Protocol for Wireless Networks with Directional Antennas. <i>Lecture Notes in Computer Science</i> , 2005 , 696-707	0.9	2
65	UAV-assisted connectivity enhancement algorithms for multiple isolated sensor networks in agricultural Internet of Things. <i>Computer Networks</i> , 2022 , 207, 108854	5.4	2
64	FELIDS: Federated learning-based intrusion detection system for agricultural Internet of Things. <i>Journal of Parallel and Distributed Computing</i> , 2022 , 165, 17-31	4.4	2
63	Two-Hop Energy Consumption Balanced Routing Algorithm for Solar Insecticidal Lamp Internet of Things <i>Sensors</i> , 2021 , 22,	3.8	2
62	Spatial Keyword Query Processing in the Internet of Vehicles. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2017 , 1-13	0.2	1
61	Editorial for Special Issue on Industrial Networks and Intelligent Systems. <i>Mobile Networks and Applications</i> , 2015 , 20, 121-123	2.9	1
60	Using wearable equipment to construct monitoring maps in large-scale petrochemical plants 2015 ,		1

59	Improving WSNs sleep scheduling mechanism with SDN-like architecture 2015,		1
58	Guest Editorial Special Issue on Multimedia Services Provision Over Future Mobile Computing Systems. <i>IEEE Systems Journal</i> , 2018 , 12, 12-15	4.3	1
57	Optimal Design of Compact Receive Array in Industrial Wireless Sensor Networks 2016,		1
56	A Dynamic Underwater Sensor Network Architecture Based on Physical Clustering and Intra-cluster Autonomy. <i>Communications in Computer and Information Science</i> , 2014 , 82-92	0.3	1
55	An overlapping clustering approach for routing in Wireless Sensor Networks 2013,		1
54	IEEE Access Special Section Editorial: Emergent Topics for Mobile and Ubiquitous Systems in Smartphone, IOT, and Cloud Computing ERA. <i>IEEE Access</i> , 2017 , 5, 27827-27830	3.5	1
53	High energy proton and heavy ion induced single event transient in 65-nm CMOS technology. <i>Science China Information Sciences</i> , 2017 , 60, 1	3.4	1
52	A comparative study of WPD and EMD for shaft fault diagnosis 2017 ,		1
51	Impact of synchronization scheme on duty cycling in IEEE 802.15.4 cluster tree networks 2017,		1
50	An unequal clustering routing protocol for energy-heterogeneous wireless sensor networks 2015,		1
49	A measurement study of a campus Wi-Fi network with mixed handheld and non-handheld traffic 2015 ,		1
48	An energy-efficient tracking scheme for continuous objects in duty-cycled wireless sensor networks 2015 ,		1
47	IEEE Access Special Section Editorial: Industrial Sensor Networks With Advanced Data Management: Design And Security. <i>IEEE Access</i> , 2015 , 3, 2700-2703	3.5	1
46	Message Dissemination in Delay-Tolerant Networks with Probabilistic Encounters 2012,		1
45	DC-Tree: Density-Based Clustering Index for Objects in Skewed Distribution 2012,		1
44	Study of impacts of duty-cycle on overlapping multi-hop clustering in wireless sensor networks. Journal of China Universities of Posts and Telecommunications, 2012 , 19, 19-91		1
43	Performance evaluation of localization algorithms in large-scale Underwater Sensor Networks 2013 ,		1
42	ZiLoc: Energy efficient WiFi fingerprint-based localization with low-power radio 2013,		1

41	A Pipelined-forwarding, Routing-integrated and effectively-Identifying MAC for large-scale WSN 2013 ,		1
40	Guest Editorial Multimedia Communications System. <i>IEEE Systems Journal</i> , 2011 , 5, 438-439	4.3	1
39	Event-Driven RFID System Development for Retailer Supermarket 2009 ,		1
38	Service Protocol Replaceability Assessment in Mediated Service Interactions 2011 ,		1
37	Efficient Searching Mechanism for Trust-Aware Recommender Systems Based on Scale-Freeness of Trust Networks 2012 ,		1
36	Behavioral analysis of web services for supporting mediated service interoperations 2008,		1
35	Target-Barrier Coverage Improvement in an Insecticidal Lamps Internet of UAVs. <i>IEEE Transactions on Vehicular Technology</i> , 2022 , 1-1	6.8	1
34	Impact of Irregular Radio and Faulty Nodes on Localization in Industrial WSNs. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2018 , 36-48	0.2	1
33	A Short Survey on Fault Diagnosis of Rotating Machinery Using Entropy Techniques. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2018 , 279	-284	1
32	Reality Mining: Digging the Impact of Friendship and Location on Crowd Behavior. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2014 , 142-15.	54 ^{0.2}	1
31	On Multipath Balancing and Expanding for Wireless Multimedia Sensor Networks. <i>Communications in Computer and Information Science</i> , 2009 , 350-359	0.3	1
30	. IEEE Industrial Electronics Magazine, 2021 , 15, 52-64	6.2	1
29	Underwater event identification and determination in UWSNs 2016,		1
28	Enabling Efficient Model-Free Control of Large-Scale Canals by Exploiting Domain Knowledge. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 8730-8742	8.9	1
27	. IEEE Access, 2021 , 9, 63740-63744	3.5	1
26	A Short Review of Constructing Noise Map Using Crowdsensing Technology. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2018 , 37-43	0.2	1
25	ETRI-QM: Reward Oriented Query Model for Wireless Sensor Networks. <i>Lecture Notes in Computer Science</i> , 2005 , 597-608	0.9	1
24	SA1D-CNN: A Separable and Attention Based Lightweight Sensor Fault Diagnosis Method for Solar Insecticidal Lamp Internet of Things. <i>IEEE Open Journal of the Industrial Electronics Society</i> , 2022 , 1-1	3.6	1

23	A backoff differentiation scheme for contention resolution in wireless converge-cast networks. <i>Concurrency Computation Practice and Experience</i> , 2013 , 25, 112-128	1.4	О
22	Data Gathering with Multi-Attribute Fusion in Wireless Sensor Networks159-181		O
21	Online Reconfiguration of Latency-Aware IoT Services in Edge Networks. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	0
20	Distributed Beacon Synchronization Mechanism for 802.15.4 Cluster-Tree Topology. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2018 , 10-2	26 ^{0.2}	O
19	. IEEE Systems Journal, 2020 , 14, 477-488	4.3	O
18	Improvement of Detection and Localization Performance Using the Receiving Array Response Difference Between Ocean Noise and Signal in Shallow Water. <i>IEEE Access</i> , 2019 , 7, 98474-98485	3.5	
17	Horizontal Slicing Clustering Based Movement Detection Method for IoTs. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2018 , 279-287	0.2	
16	Belief functions and uncertainty management in networks and telecommunication. <i>Annales Des Telecommunications/Annals of Telecommunications</i> , 2014 , 69, 131-133	2	
15	A MapReduce-Based Ensemble Learning Method with Multiple Classifier Types and Diversity for Condition-based Maintenance with Concept Drifts. <i>IEEE Cloud Computing</i> , 2017 , 1-1		
14	Secured Geographic Forwarding in Wireless Multimedia Sensor Networks. <i>Journal of Information Processing</i> , 2012 , 20, 54-64	0.2	
13	Replication Strategies for Video On-Demand over Wireless Mesh Networks349-375		
12	Security Issues on Outlier Detection and Countermeasure for Distributed Hierarchical Wireless Sensor Networks1099-1126		
11	Security Issues on Outlier Detection and Countermeasure for Distributed Hierarchical Wireless Sensor Networks182-210		
10	RNST230-257		
9	Using Wireless Vibration Sensors to Study the Impact of Fouling on Fluid-Conveying Pipelines. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018 , 288-292	0.2	
8	An Optimized Implementation of Speech Recognition Combining GPU with Deep Belief Network for IoT. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, 251-260	0.2	
7	Reality Mining with Mobile Data: Understanding the Impact of Network Structure on Propagation Dynamics. <i>Lecture Notes in Computer Science</i> , 2015 , 442-461	0.9	
6	MR*-Tree: Novel Indexing and Retrieving Mechanism for Spatial Objects in Mobile PowerPoint Pages. <i>International Journal of Distributed Sensor Networks</i> , 2015 , 2015, 1-10	1.7	

LIST OF PUBLICATIONS

5	Making It Trustable: Acoustic-Based Signcryption Mutual Authentication for Multiwearable Devices. <i>International Journal of Distributed Sensor Networks</i> , 2015 , 11, 846739	1.7
4	Mobile Sensing and Data Management for Sensor Networks 2014. <i>International Journal of Distributed Sensor Networks</i> , 2015 , 11, 278146	1.7
3	A Rate Feedback Predictive Control Scheme Based on Neural Network and Control Theory for Autonomic Communication 2009 , 93-107	
2	Using Real-Time Event Stream Framework to Develop RFID-based Retailer Supermarket Systems 2011 , 429-440	
1	Impacts of Network Parameters on Data Collection in Duty-cycled Wireless Sensor Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2013, 167-177	0.2