Kestutis Romaneckas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/560247/publications.pdf

Version: 2024-02-01

26 papers 503 citations

759233 12 h-index 677142 22 g-index

26 all docs

26 docs citations

times ranked

26

478 citing authors

#	Article	IF	CITATIONS
1	Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy, 2014, 69, 227-235.	8.8	84
2	Relationship between CO2 emissions and soil properties of differently tilled soils. Science of the Total Environment, 2019, 662, 786-795.	8.0	60
3	Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania. Science of the Total Environment, 2015, 514, 1-9.	8.0	41
4	Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland. Sustainability, 2019, 11, 4714.	3.2	41
5	Fuel consumption and CO 2 emission analysis in different strip tillage scenarios. Energy, 2017, 118, 957-968.	8.8	36
6	Importance of Agriculture in Creating Energy Security—A Case Study of Poland. Energies, 2021, 14, 2465.	3.1	28
7	Energy use and carbon emission of conventional and organic sugar beet farming. Journal of Cleaner Production, 2018, 201, 428-438.	9.3	26
8	Impact of Nitrogen and Boron Fertilization on Winter Triticale Productivity Parameters. Agronomy, 2020, 10, 279.	3.0	24
9	Soil Properties after Eight Years of the Use of Strip-Till One-Pass Technology. Agronomy, 2020, 10, 1596.	3.0	20
10	Are Higher Input Levels to Triticale Growing Technologies Effective in Biofuel Production System?. Sustainability, 2019, 11, 5915.	3.2	18
11	Improving energy efficiency and environmental mitigation through tillage management in faba bean production. Energy, 2020, 209, 118453.	8.8	18
12	Variable Rate Seeding in Precision Agriculture: Recent Advances and Future Perspectives. Agriculture (Switzerland), 2022, 12, 305.	3.1	18
13	Impact of sustainable tillage on biophysical properties of Planosol and on faba bean yield. Agricultural and Food Science, 2019, 28, .	0.9	12
14	Recycling and utilisation of faba bean harvesting and threshing waste for bioenergy. Renewable Energy, 2020, 162, 257-266.	8.9	11
15	Influence of Mechanical and Intelligent Robotic Weed Control Methods on Energy Efficiency and Environment in Organic Sugar Beet Production. Agriculture (Switzerland), 2021, 11, 449.	3.1	10
16	A Strip-Till One-Pass System as a Component of Conservation Agriculture. Agronomy, 2020, 10, 2015.	3.0	10
17	The Impact of Intercropping on Soil Fertility and Sugar Beet Productivity. Agronomy, 2020, 10, 1406.	3.0	9
18	Investigation of Pressed Solid Biofuel Produced from Multi-Crop Biomass. Sustainability, 2022, 14, 799.	3.2	7

#	Article	IF	CITATIONS
19	How to Analyze, Detect and Adjust Variable Seedbed Depth in Site-Specific Sowing Systems: A Case Study. Agronomy, 2022, 12, 1092.	3.0	7
20	Weed Diversity, Abundance, and Seedbank in Differently Tilled Faba Bean (Vicia faba L.) Cultivations. Agronomy, 2021, 11, 529.	3.0	6
21	Short-Term Impact of Multi-Cropping on Some Soil Physical Properties and Respiration. Agronomy, 2022, 12, 141.	3.0	5
22	Impact of Different Tillage Methods on Silty Loam Luvisol Water Content in Sugar Beet (<i>Beta) Tj ETQq0 (</i>	0 rgBT /0	Overlock 10 1
23	Planosol CO2 Respiration, Chemical and Physical Properties of Differently Tilled Faba Bean Cultivation. Land, 2020, 9, 456.	2.9	3
24	Impact of Tillage Methods on Environment, Energy and Economy. Sustainable Agriculture Reviews, 2018, , 53-97.	1,1	2
25	Impact of non-chemical weed control methods on the soil and sugar beet root chemical composition. Journal of Elementology, 2018, , .	0.2	2
26	Effect of variable rate seeding on winter wheat seedbed and germination parameters using soil apparent electrical conductivity., 2021,,.		1