
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5602166/publications.pdf Version: 2024-02-01

TINC CUO

#	Article	IF	CITATIONS
1	Fullerenes with metals inside. The Journal of Physical Chemistry, 1991, 95, 7564-7568.	2.9	1,248
2	Picosecond–milliångström lattice dynamics measured by ultrafast X-ray diffraction. Nature, 1999, 398, 310-312.	13.7	531
3	Self-Assembly of Tubular Fullerenes. The Journal of Physical Chemistry, 1995, 99, 10694-10697.	2.9	499
4	Uranium Stabilization of C28: A Tetravalent Fullerene. Science, 1992, 257, 1661-1664.	6.0	445
5	Doping bucky: formation and properties of boron-doped buckminsterfullerene. The Journal of Physical Chemistry, 1991, 95, 4948-4950.	2.9	398
6	Nanoscale Energy Deposition by X-ray Absorbing Nanostructures. Journal of Physical Chemistry B, 2007, 111, 11622-11625.	1.2	207
7	Ab initio theoretical predictions of C28, C28H4, C28F4, (Ti@C28)H4, and M@C28 (M=Mg, Al, Si, S, Ca, Sc,) Tj E	TQq110. 1.2	784314 rgBT 158
8	Chemical Enhancement by Nanomaterials under X-ray Irradiation. Journal of the American Chemical Society, 2012, 134, 1950-1953.	6.6	112
9	Influence of Particle Size on Persistence and Clearance of Aerosolized Silver Nanoparticles in the Rat Lung. Toxicological Sciences, 2015, 144, 366-381.	1.4	83
10	Investigation of Co nanoparticles with EXAFS and XANES. Chemical Physics Letters, 2004, 400, 122-127.	1.2	69
11	Alkanethiol-Induced Structural Rearrangements in Silicaâ^'Gold Coreâ^'Shell-type Nanoparticle Clusters:Â An Opportunity for Chemical Sensor Engineering. Langmuir, 2004, 20, 5553-5558.	1.6	68
12	Electronic shell closings in metal cluster plus adsorbate systems: Cu+7CO and Cu+17CO. Journal of Chemical Physics, 1991, 95, 6181-6184.	1.2	67
13	X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chemical Communications, 2013, 49, 2545.	2.2	62
14	Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 2005, , 3192.	2.2	60
15	A 50-EW/cm^2 Ti:sapphire laser system for studying relativistic light-matter interactions. Optics Express, 1999, 5, 196.	1.7	55
16	Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition. Nanotoxicology, 2015, 9, 591-602.	1.6	48
17	Ab initio calculations of tetrahedral hydrogenated buckminsterfullerene. Chemical Physics Letters, 1992, 191, 527-532.	1.2	46
18	Synthesis of Tubular Gold and Silver Nanoshells Using Silica Nanowire Core Templates. Langmuir, 2006, 22, 6367-6374.	1.6	46

#	Article	IF	CITATIONS
19	Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain. Environmental Health Perspectives, 2016, 124, 1870-1875.	2.8	46
20	Electron Paramagnetic Resonance Spectroscopy Investigation of Radical Production by Gold Nanoparticles in Aqueous Solutions Under X-ray Irradiation. Journal of Physical Chemistry A, 2016, 120, 2815-2823.	1.1	37
21	Crystal Structures, Raman Spectroscopy, and Magnetic Properties of Ba7.5Al13Si29and Eu0.27Ba7.22Al13Si29. Inorganic Chemistry, 2005, 44, 9185-9191.	1.9	32
22	Surface Segregation in Ni/Co Bimetallic Nanoparticles Produced in Single-Walled Carbon Nanotube Synthesis. Journal of Physical Chemistry B, 2002, 106, 5833-5839.	1.2	31
23	An Example of X-ray Nanochemistry: SERS Investigation of Polymerization Enhanced by Nanostructures under X-ray Irradiation. Journal of Physical Chemistry Letters, 2012, 3, 3271-3275.	2.1	30
24	Aerosolized Silver Nanoparticles in the Rat Lung and Pulmonary Responses over Time. Toxicologic Pathology, 2016, 44, 673-686.	0.9	29
25	Picosecond-milliangstrom resolution dynamics by ultrafast x-ray diffraction. , 1997, , .		27
26	Silicon-based nanowires from silicon wafers catalyzed by cobalt nanoparticles in a hydrogen environment. Chemical Communications, 2005, , 2274.	2.2	27
27	Average Physical Enhancement by Nanomaterials under X-ray Irradiation. Journal of Physical Chemistry C, 2014, 118, 30221-30228.	1.5	24
28	Silica Nanocoils. Journal of Physical Chemistry B, 2006, 110, 8296-8301.	1.2	23
29	X-ray-Induced Energy Transfer between Nanomaterials under X-ray Irradiation. Journal of Physical Chemistry C, 2016, 120, 3054-3060.	1.5	22
30	Carbon Dioxide Reforming of Methane by Ni/Co Nanoparticle Catalysts Immobilized on Single-Walled Carbon Nanotubes. Energy & Fuels, 2008, 22, 2183-2187.	2.5	21
31	Synthesis and self-assembled ring structures of Ni nanocrystals. Journal of Colloid and Interface Science, 2006, 293, 430-436.	5.0	20
32	Growth of Self-Aligned Crystalline Cobalt Silicide Nanostructures from Co Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 6901-6904.	1.2	19
33	Compact 50-Hz terawatt Ti:sapphire laser for x-ray and nonlinear optical spectroscopy. Applied Optics, 2002, 41, 5148.	2.1	18
34	Probing Site Activity of Monodisperse Pt Nanoparticle Catalysts Using Steam Reforming of Methane. Journal of Physical Chemistry Letters, 2010, 1, 254-259.	2.1	17
35	Synthesis and electric properties of dicobalt silicide nanobelts. Chemical Communications, 2011, 47, 1255-1257.	2.2	15
36	Fullerene doped glasses. Applied Physics Letters, 1994, 65, 2522-2524.	1.5	14

#	Article	IF	CITATIONS
37	Physical, chemical and biological enhancement in X-ray nanochemistry. Physical Chemistry Chemical Physics, 2019, 21, 15917-15931.	1.3	14
38	Atomic Tungsten for Ultrafast Hard X-ray Generation. Journal of Physical Chemistry A, 2005, 109, 4216-4220.	1.1	13
39	Coherent anti-Stokes Raman scattering microscopy with spectrally tailored ultrafast pulses. Review of Scientific Instruments, 2005, 76, 043108.	0.6	12
40	Multiplication Algorithm for Combined Physical and Chemical Enhancement of X-ray Effect by Nanomaterials. Journal of Physical Chemistry C, 2015, 119, 19513-19519.	1.5	12
41	Laser-driven hard-x-ray generation based on ultrafast selected energy x-ray absorption spectroscopy measurements of Ni compounds. Physical Review E, 2005, 71, 025401.	0.8	11
42	Enhanced single strand breaks of supercoiled DNA in a matrix of gold nanotubes under X-ray irradiation. Journal of Colloid and Interface Science, 2012, 378, 70-76.	5.0	11
43	X-ray Nanochemistry. Nanostructure Science and Technology, 2018, , .	0.1	9
44	Surface modification induced cuprous oxide nanoparticle toxicity to duckweed at sub-toxic metal concentrations. Science of the Total Environment, 2020, 722, 137607.	3.9	9
45	Timeâ€Resolved Annular Dark Field Imaging of Catalyst Nanoparticles. ChemPhysChem, 2010, 11, 2088-2090.	1.0	8
46	Determination of CoSi2Self-Aligned Nanostructures with Grazing Incidence X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 4118-4122.	1.2	7
47	Toward Development of Fluorescence-Quenching-Based Biosensors for Drought Stress in Plants. Analytical Chemistry, 2019, 91, 15644-15651.	3.2	7
48	Ultrafast movies of atomic motion with femtosecond laser-based x rays. , 1999, , .		6
49	Ultrafast selected energy x-ray absorption spectroscopy investigations of Ni and Zn species. Journal of Chemical Physics, 2005, 122, 244710.	1.2	6
50	Surface modification of gold nanotubules via microwave radiation, sonication and chemical etching. Chemical Physics Letters, 2006, 432, 195-199.	1.2	6
51	Recognition of melting of nanoparticle catalysts with cubically shaped Co3O4 nanoparticles. Journal of Colloid and Interface Science, 2008, 321, 251-255.	5.0	6
52	Concentration-Dependent Association between Weakly Attractive Nanoparticles in Aqueous Solutions. Journal of Physical Chemistry C, 2016, 120, 19830-19836.	1.5	6
53	Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region. Journal of Colloid and Interface Science, 2016, 479, 173-181.	5.0	6
54	Identification of Individual Reaction Steps in Complex Radical Reactions Involving Gold Nanoparticles. ChemPhysChem, 2018, 19, 3328-3333.	1.0	6

#	Article	IF	CITATIONS
55	Investigations of Laser Evaporation in Ambient Pressure Helium with Ultrafast Hard X-ray Pulses. Journal of Physical Chemistry C, 2007, 111, 4643-4647.	1.5	5
56	Aerosolization System for Experimental Inhalation Studies of Carbon-Based Nanomaterials. Aerosol Science and Technology, 2012, 46, 94-107.	1.5	5
57	Determination of Absolute Quantum Efficiency of X-ray Nano Phosphors by Thin Film Photovoltaic Cells. Analytical Chemistry, 2014, 86, 10492-10496.	3.2	5
58	Encapsulation of multiple large spherical silica nanoparticles in hollow spherical silica shells. Journal of Colloid and Interface Science, 2015, 445, 112-118.	5.0	5
59	X-ray-Mediated Release of Molecules and Engineered Proteins from Nanostructure Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 31860-31864.	4.0	5
60	Damage of supercoiled DNA by an ultrafast laser-driven electron x-ray source. Optics Express, 2007, 15, 754.	1.7	3
61	Nanoparticle-Assisted Scanning Focusing X-Ray Therapy with Needle Beam X Rays. Radiation Research, 2016, 185, 87-95.	0.7	3
62	Theoretical Study of X-ray Induced Energy Transfer (XIET) from Nanomaterial Donors to Nanomaterial Acceptors. Journal of Physical Chemistry C, 2018, 122, 18640-18650.	1.5	2
63	Sealable Spherical Mesoporous Silica Shell Nanoreactors as Fiducial Nanoscale Probes for X-rays. Journal of Physical Chemistry A, 2018, 122, 8686-8692.	1.1	2
64	Physical Enhancement of the Effectiveness of X-Ray Irradiation. Nanostructure Science and Technology, 2018, , 23-116.	0.1	2
65	Ultrafast X-ray diffraction measurements with a laser-produced plasma source. , 1998, , .		1
66	Ultrafast X-ray diffraction measurements with a laser-produced plasma source. , 0, , .		1
67	Ultrafast selected-energy x-ray absorption spectroscopy (USEXAS) with a laser-driven x-ray source. , 2004, 5340, 113.		1
68	Chemical Enhancement. Nanostructure Science and Technology, 2018, , 117-157.	0.1	1
69	Nanomaterials for X-Ray Nanochemistry. Nanostructure Science and Technology, 2018, , 201-238.	0.1	1
70	X-Ray Nanochemistry and Its Applications in Biology. Nanostructure Science and Technology, 2018, , 269-298.	0.1	1
71	Growth of Self-Aligned Crystalline Cobalt Silicide Nanostructures from Co Nanoparticles ChemInform, 2004, 35, no.	0.1	0

Nanowires for solar energy and hydrogen production. , 2007, , .

#	Article	IF	CITATIONS
73	A Dual Catalytic Role of Co Nanoparticles in Bulk Synthesis of Si-Based Nanowires. , 2007, , 153-181.		Ο
74	Investigation of magnetic field manipulated electrons produced from laser-driven ultrafast x-ray sources using x-ray emission spectroscopy. Journal Physics D: Applied Physics, 2015, 48, 105202.	1.3	0
75	Identification of Individual Reaction Steps in Complex Radical Reactions Involving Gold Nanoparticles. ChemPhysChem, 2018, 19, 3327-3327.	1.0	0
76	Medical Applications of X-Ray Nanochemistry. Nanostructure Science and Technology, 2018, , 299-409.	0.1	0
77	X-Ray Nanochemistry: Background and Introduction. Nanostructure Science and Technology, 2018, , 3-20.	0.1	0
78	Applications of X-Ray Nanochemistry in Sensing, Radiolysis, and Environmental Research. Nanostructure Science and Technology, 2018, , 431-456.	0.1	0
79	Applications of X-Ray Nanochemistry in Catalysis. Nanostructure Science and Technology, 2018, , 411-429.	0.1	0
80	Techniques and Instruments for X-Ray Nanochemistry. Nanostructure Science and Technology, 2018, , 239-265.	0.1	0
81	Fast Fluorescence Titration Quantification of Plasmid DNA with DNA Attractive Magnetic Nanoparticles. Analytical Chemistry, 2021, 93, 12854-12861.	3.2	0
82	Determination of charge state of tungsten during ultrafast hard x-ray generation. , 2006, , 53-56.		0
83	Damaging DNA with Ultrafast Hard X-rays. , 2006, , .		0
84	Investigation of Plume Dynamics with Ultrafast Hard X-ray Absorption Spectroscopy. , 2006, , .		0
85	Imaging Plume Dynamics with Ultrafast Hard X-rays. Springer Series in Chemical Physics, 2007, , 728-730.	0.2	0
86	More Power to X-rays: From Ultrafast Dynamics of Metal Complexes to Enhanced Damage to DNA. , 2007, , .		0
87	DNA Strand Breaks by a Laser-Driven Electron X-ray Source (LEXS). Springer Series in Chemical Physics, 2007, , 734-736.	0.2	0
88	lsolation, Optimization, and Combination of Individual Enhancements. Nanostructure Science and Technology, 2018, , 177-198.	0.1	0