Jonathan S Colton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5602120/publications.pdf

Version: 2024-02-01

516215 233125 69 2,126 16 45 citations g-index h-index papers 69 69 69 1898 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improved composite open-hole compression strength and trade-off with manufacturability controlled by stacking sequence effect and non-standard ply angles. Composites Part B: Engineering, 2022, 228, 109410.	5.9	2
2	Processing of post-industrial unidirectional prepreg tapes using SMC equipment. International Journal of Advanced Manufacturing Technology, 2022, 121, 2831-2839.	1.5	3
3	Effects of ply angle and blocking on open-hole tensile strength of composite laminates: A design and certification perspective. Composites Part B: Engineering, 2021, 207, 108582.	5.9	20
4	Design and testing of a prototype foot orthosis that uses the principle of granular jamming. Prosthetics and Orthotics International, 2021, Publish Ahead of Print, 240-245.	0.5	0
5	A Techno-Economic Model for Wind Energy Costs Analysis for Low Wind Speed Areas. Processes, 2021, 9, 1463.	1.3	20
6	Multi-Parameter Optimization of Efficiency, Capital Cost and Mass of Ferris Wheel Turbine for Low Wind Speed Regions. Energies, 2021, 14, 6217.	1.6	3
7	A compact open-hole compression test fixture for composite materials. Composites Part B: Engineering, 2021, 223, 109126.	5.9	1
8	Exploring the environmental and economic impacts of wind energy: a cost-benefit perspective. International Journal of Sustainable Development and World Ecology, 2020, 27, 718-731.	3.2	28
9	Composite Laminate Design for Improved Open-Hole Compression Strength using Non-Standard Ply Angles and Customized Stacking Sequences Characterized by [D] Matrix. Materials Today Communications, 2020, 24, 101172.	0.9	0
10	Efficient and participatory design of scale-appropriate agricultural machinery workshops in developing countries: A case study in Bangladesh. Development Engineering, 2020, 5, 100046.	1.4	7
11	Composites made from CF prepreg trim waste tapes using sheet molding compounds (SMC) technology: Challenges and potential. Composites Part A: Applied Science and Manufacturing, 2020, 134, 105906.	3.8	11
12	Surface-treated kaolin minerals as a complement or substitute to glass fibers in thermoplastics. Polymer Engineering and Science, 2019, 59, E330-E338.	1.5	2
13	Effects of manufacturing parameters on performance of fluidic oscillators for aerodynamic flow control. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233, 3603-3611.	0.7	4
14	The design and manufacturing of fluidic oscillators for composite aircraft structures. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233, 1250-1259.	1.5	1
15	Design and cost analysis of integration of fluidic oscillator into a flap structure. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232, 2978-2988.	0.7	1
16	A comparison of CFRP composite laminated joints fabricated with vacuum assisted resin transfer molding. EXPRESS Polymer Letters, 2018, 12, 781-789.	1.1	9
17	Integrating Photovoltaic Technologies in Smart Homes. , 2018, , .		2
18	A Simplified Irrigation Pump Testing Method for Developing Countries: A Case Study in Bangladesh. Irrigation and Drainage, 2018, 67, 559-571.	0.8	4

#	Article	IF	Citations
19	The acceptability of dietary tools to improve maternal and child nutrition in Western Kenya. Public Health Nutrition, 2016, 19, 1823-1833.	1.1	8
20	Acceptability and Utility of an Innovative Feeding Toolkit to Improve Maternal and Child Dietary Practices in Bihar, India. Food and Nutrition Bulletin, 2015, 36, 24-32.	0.5	12
21	Using sensitivity analysis to improve the efficiency of a Net-Zero Energy vaccine warehouse design. Building and Environment, 2015, 87, 302-314.	3.0	13
22	A design methodology for the economic design of vaccine warehouses in the developing world. Building and Environment, 2014, 82, 160-170.	3.0	8
23	Effects of Micronized Rubber Powders on Structure and Properties of Polypropylene Composites. Waste and Biomass Valorization, 2013, 4, 65-71.	1.8	11
24	Magneticâ€clamping structures for the consolidation of composite laminates. Polymer Composites, 2012, 33, 951-960.	2.3	6
25	Production of Metal Wire â€" Polymeric Foam Composites for Dielectric Applications. Journal of Cellular Plastics, 2009, 45, 461-478.	1.2	0
26	Characterization of Plastic Hypodermic Needles. Journal of Medical Devices, Transactions of the ASME, 2009, 3 , .	0.4	9
27	Oven melting encapsulization of hypodermic needles by syringes. Journal of Medical Engineering and Technology, 2009, 33, 616-621.	0.8	1
28	Microcantilevers:  Sensing Chemical Interactions via Mechanical Motion. Chemical Reviews, 2008, 108, 522-542.	23.0	329
29	Fatigue of reinforced-polyurethane-based, sheet metal forming dies. International Journal of Fatigue, 2006, 28, 43-52.	2.8	4
30	Injection-moulded scanning force microscopy probes. Nanotechnology, 2005, 16, 1249-1252.	1.3	16
31	Characterization of microcantilevers solely by frequency response acquisition. Journal of Micromechanics and Microengineering, 2005, 15, 785-791.	1.5	46
32	Fabrication and analysis of plastic hypodermic needles. Journal of Medical Engineering and Technology, 2005, 29, 181-186.	0.8	19
33	Role of material microstructure in plate stiffness with relevance to microcantilever sensors. Journal of Micromechanics and Microengineering, 2005, 15, 1060-1067.	1.5	737
34	A Method for Calculating the Spring Constant of Atomic Force Microscopy Cantilevers with a Nonrectangular Cross Section. Analytical Chemistry, 2005, 77, 1192-1195.	3.2	43
35	Injection moulding of high aspect ratio micron-scale thickness polymeric microcantilevers. Nanotechnology, 2004, 15, 1628-1632.	1.3	32
36	Production and analysis of injection molded micro-optic components. Polymer Engineering and Science, 2004, 44, 564-579.	1.5	13

#	Article	IF	Citations
37	Polymeric composites for use in electronic and microwave devices. Polymer Engineering and Science, 2004, 44, 588-597.	1.5	34
38	Measuring the Compression of a Carbon Nanospring. Nano Letters, 2004, 4, 1009-1016.	4.5	71
39	Production and characterization of polymer microcantilevers. Review of Scientific Instruments, 2004, 75, 2756-2758.	0.6	32
40	Properties of rapid prototype injection mold tooling materials. Polymer Engineering and Science, 2003, 43, 125-138.	1.5	12
41	Flexible polymer composite electromagnetic crystals. Polymer Engineering and Science, 2003, 43, 822-830.	1.5	8
42	Effects of aging on epoxyâ€based rapid tooling materials. Rapid Prototyping Journal, 2002, 8, 215-223.	1.6	17
43	Using Genetic Algorithms to Set Target Values for Engineering Characteristics in the House of Quality. Journal of Computing and Information Science in Engineering, 2002, 2, 106-114.	1.7	4
44	Ejection force modeling for stereolithography injection molding tools. Polymer Engineering and Science, 2002, 42, 681-693.	1.5	11
45	A machine system for the rapid production of composite structures. Polymer Composites, 2000, 21, 124-133.	2.3	5
46	Material systems for rapid manufacture of composite structures. Polymer Composites, 2000, 21, 918-930.	2.3	4
47	Thermal effects on stereolithography injection mold inserts. Polymer Engineering and Science, 2000, 40, 1360-1368.	1.5	10
48	A process management strategy for re-design: An Anchoring Adjustment approach. Journal of Engineering Design, 2000, 11, 159-173.	1.1	10
49	Draft angle and surface roughness effects on stereolithography molds. Polymer Engineering and Science, 2000, 40, 1581-1588.	1.5	14
50	EVALUATION OF EPOXY RESINS FOR USE IN HOT, WET ENVIRONMENTS. Polymer-Plastics Technology and Engineering, 2000, 39, 667-682.	1.9	6
51	Serviceability Considerations for the Layout of Coiled Tubing Units. Journal of Engineering Design, 1999, 10, 259-275.	1.1	1
52	Resin transfer molding of BMIs and polymides. Polymer Composites, 1998, 19, 732-737.	2.3	2
53	An Anchoring Adjustment Process Model for Redesign. Journal of Engineering Design, 1998, 9, 297-314.	1.1	1
54	Fiber coiling during bladder molding of thermoplastic composites. Polymer Composites, 1996, 17, 627-636.	2.3	1

#	Article	IF	CITATIONS
55	Thermal analysis of thermoplastic composites during processing. Polymer Composites, 1995, 16, 198-203.	2.3	7
56	Microstructure-based processing parameters of thermoplastic composite materials. Part I: Theoretical models. Polymer Composites, 1994, 15, 34-41.	2.3	6
57	Microstructure-based processing parameters of thermoplastic composite materials. Part II: Experimental results. Polymer Composites, 1994, 15, 42-45.	2.3	3
58	Quantitative image processing analysis of composite materials. Polymer Composites, 1994, 15, 46-54.	2.3	23
59	On-line consolidation of thermoplastic towpreg composites in filament winding. Polymer Composites, 1994, 15, 436-441.	2.3	14
60	Information frameworks for conceptual engineering design. Engineering With Computers, 1994, 10, 22-32.	3.5	3
61	A form verification system for the conceptual design of complex mechanical systems. Engineering With Computers, 1994, 10, 33-44.	3.5	13
62	Resin transfer molding with powder-coated preforms. Polymer Composites, 1993, 14, 341-348.	2.3	8
63	Processing parameters for consolidating PEEK/carbon fiber (APC-2) composites. Polymer Composites, 1992, 13, 421-426.	2.3	11
64	Processing parameters for filament winding thick-section PEEK/carbon fiber composites. Polymer Composites, 1992, 13, 427-434.	2.3	20
65	The complementary roles of expert systems and database management systems in a design for manufacture environment. Engineering With Computers, 1992, 8, 139-149.	3.5	2
66	An integrated, intelligent design environment. Engineering With Computers, 1991, 7, 11-22.	3.5	16
67	Thermoforming of high performance thermoplastic composites. Polymer Composites, 1990, 11, 280-285.	2.3	11
68	Automation of Thermoplastic Composite Processing. Journal of Composite Materials, 1990, 24, 150-174.	1.2	9
69	Nucleation of microcellular foam: Theory and practice. Polymer Engineering and Science, 1987, 27, 500-503.	1.5	312