Ana-Isabel de Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5601715/publications.pdf

Version: 2024-02-01

41 papers 2,776 citations

201575 27 h-index 302012 39 g-index

41 all docs

41 docs citations

41 times ranked

2623 citing authors

#	Article	IF	CITATIONS
1	Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture, 2014, 103, 104-113.	3.7	365
2	Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images. PLoS ONE, 2013, 8, e77151.	1.1	282
3	Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management. PLoS ONE, 2013, 8, e58210.	1.1	230
4	An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery. Remote Sensing, 2018, 10, 285.	1.8	188
5	Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precision Agriculture, 2014, 15, 44-56.	3.1	180
6	Early season weed mapping in sunflower using UAV technology: variability of herbicide treatment maps against weed thresholds. Precision Agriculture, 2016, 17, 183-199.	3.1	144
7	Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV) Technology for Weed Seedling Detection as Affected by Sensor Resolution. Sensors, 2015, 15, 5609-5626.	2.1	136
8	Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling. Plant Methods, 2017, 13, 55.	1.9	90
9	3-D Characterization of Vineyards Using a Novel UAV Imagery-Based OBIA Procedure for Precision Viticulture Applications. Remote Sensing, 2018, 10, 584.	1.8	87
10	Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis. Biosystems Engineering, 2018, 176, 172-184.	1.9	75
11	Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor. Scientific Reports, 2018, 8, 2793.	1.6	69
12	Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado. Remote Sensing of Environment, 2015, 171, 33-44.	4.6	66
13	Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery. Agronomy for Sustainable Development, 2016, 36, 1.	2.2	66
14	Broad-scale cruciferous weed patch classification in winter wheat using QuickBird imagery for in-season site-specific control. Precision Agriculture, 2013, 14, 392-413.	3.1	64
15	Airborne multi-spectral imagery for mapping cruciferous weeds in cereal and legume crops. Precision Agriculture, 2012, 13, 302-321.	3.1	60
16	UAVs for Vegetation Monitoring: Overview and Recent Scientific Contributions. Remote Sensing, 2021, 13, 2139.	1.8	60
17	Evaluating the performance of spectral features and multivariate analysis tools to detect laurel wilt disease and nutritional deficiency in avocado. Computers and Electronics in Agriculture, 2018, 155, 203-211.	3.7	55
18	Field detection of anthracnose crown rot in strawberry using spectroscopy technology. Computers and Electronics in Agriculture, 2017, 135, 289-299.	3.7	52

#	Article	IF	CITATIONS
19	An efficient RGB-UAV-based platform for field almond tree phenotyping: 3-D architecture and flowering traits. Plant Methods, 2019, 15, 160.	1.9	44
20	Detection of Laurel Wilt Disease in Avocado Using Low Altitude Aerial Imaging. PLoS ONE, 2015, 10, e0124642.	1.1	43
21	Aerial imagery or on-ground detection? An economic analysis for vineyard crops. Computers and Electronics in Agriculture, 2019, 157, 351-358.	3.7	41
22	Detection and Differentiation between Laurel Wilt Disease, Phytophthora Disease, and Salinity Damage Using a Hyperspectral Sensing Technique. Agriculture (Switzerland), 2016, 6, 56.	1.4	38
23	Automatic UAV-based detection of Cynodon dactylon for site-specific vineyard management. PLoS ONE, 2019, 14, e0218132.	1.1	37
24	Mapping Crop Calendar Events and Phenology-Related Metrics at the Parcel Level by Object-Based Image Analysis (OBIA) of MODIS-NDVI Time-Series: A Case Study in Central California. Remote Sensing, 2018, 10, 1745.	1.8	36
25	Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops. Scientific World Journal, The, 2012, 2012, 1-11.	0.8	32
26	Classification of 3D Point Clouds Using Color Vegetation Indices for Precision Viticulture and Digitizing Applications. Remote Sensing, 2020, 12, 317.	1.8	32
27	Mapping Cynodon Dactylon Infesting Cover Crops with an Automatic Decision Tree-OBIA Procedure and UAV Imagery for Precision Viticulture. Remote Sensing, 2020, 12, 56.	1.8	29
28	Estimating tree height and biomass of a poplar plantation with image-based UAV technology. AIMS Agriculture and Food, 2018, 3, 313-323.	0.8	29
29	High-Throughput System for the Early Quantification of Major Architectural Traits in Olive Breeding Trials Using UAV Images and OBIA Techniques. Frontiers in Plant Science, 2019, 10, 1472.	1.7	26
30	Watson on the Farm: Using Cloud-Based Artificial Intelligence to Identify Early Indicators of Water Stress. Remote Sensing, 2019, 11, 2645.	1.8	25
31	High-Throughput Phenotyping of Bioethanol Potential in Cereals Using UAV-Based Multi-Spectral Imagery. Frontiers in Plant Science, 2019, 10, 948.	1.7	17
32	Exploring UAV-imagery to support genotype selection in olive breeding programs. Scientia Horticulturae, 2020, 273, 109615.	1.7	16
33	Monitoring Vineyard Canopy Management Operations Using UAV-Acquired Photogrammetric Point Clouds. Remote Sensing, 2020, 12, 2331.	1.8	15
34	Early Detection of Broad-Leaved and Grass Weeds in Wide Row Crops Using Artificial Neural Networks and UAV Imagery. Agronomy, 2021, 11, 749.	1.3	13
35	Papaver rhoeas L. mapping with cokriging using UAV imagery. Precision Agriculture, 2019, 20, 1045-1067.	3.1	10
36	Assessment of the Persistence of Avena sterilis L. Patches in Wheat Fields for Site-Specific Sustainable Management. Agronomy, 2019, 9, 30.	1.3	7

#	Article	IF	CITATIONS
37	Experimental approach to detect water stress in ornamental plants using sUAS-imagery. , 2018, , .		6
38	Semi-Automatic Normalization of Multitemporal Remote Images Based on Vegetative Pseudo-Invariant Features. PLoS ONE, 2014, 9, e91275.	1.1	6
39	Applications of Sensing for. Progress in Precision Agriculture, 2021, , 369-398.	1.1	3
40	Mapas de calendario de cultivo y variables fenológicas mediante el análisis de imágenes MODIS y ASTER basado en objetos. Revista De Teledeteccion, 2014, .	0.6	2
41	Differentiate Laurel wilt disease and nutrient deficiency in avocado trees using Vis-NIR spectroscopy. , 2015, , .		0