List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5601300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Copper Oxide Nanoparticles Fabricated by the Sol–Gel Method. Journal of Electronic Materials, 2015, 44, 3704-3709.	2.2	117
2	Effect of calcination temperature on the properties of ZnO nanoparticles. Applied Physics A: Materials Science and Processing, 2015, 119, 713-720.	2.3	98
3	Photocatalytic, antibacterial, optical and magnetic properties of Fe-doped ZnO nano-particles prepared by sol-gel. Materials Science in Semiconductor Processing, 2018, 88, 109-119.	4.0	64
4	Magnetic and antibacterial studies of sol-gel dip coated Ce doped TiO2 thin films: Influence of Ce contents. Ceramics International, 2020, 46, 381-390.	4.8	60
5	Fabrication and properties of zinc oxide thin film prepared by sol-gel dip coating method. Materials Science-Poland, 2015, 33, 515-520.	1.0	59
6	Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles. Optik, 2020, 200, 163428.	2.9	57
7	Enhanced magnetic, antibacterial and optical properties of Sm doped ZnO thin films: Role of Sm doping. Optical Materials, 2020, 108, 110457.	3.6	51
8	Synthesis of Iron Oxide Nanoparticles by Sol–Gel Technique and Their Characterization. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	45
9	Role of Mn in biological, optical, and magnetic properties ZnO nano-particles. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	34
10	Synthesis of NiO nanoparticles by sol-gel technique. Materials Science-Poland, 2018, 36, 547-552.	1.0	33
11	Optical properties and antibacterial activity of V doped ZnO used in solar cells and biomedical applications. Materials Research Bulletin, 2019, 115, 121-129.	5.2	32
12	Optical and structural properties of thin films of ZnO at elevated temperature. Journal of Alloys and Compounds, 2014, 606, 177-181.	5.5	30
13	Assessment of antibacterial and optical features of sol-gel dip coated La doped TiO2 thin films. Materials Chemistry and Physics, 2020, 250, 123217.	4.0	29
14	Effect of Cu doping on the structural, magnetic and optical properties of ZnO thin films. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	27
15	Structural, optical and magnetic properties of manganese zinc oxide thin films prepared by sol–gel dip coating method. Superlattices and Microstructures, 2015, 82, 472-482.	3.1	24
16	Dip coated nickel zinc oxide thin films: Structural, optical and magnetic investigations. Superlattices and Microstructures, 2015, 77, 171-180.	3.1	22
17	Antibacterial, magnetic, optical and dielectric analysis of novel La2O3 doped ZnO thin films. Optical Materials, 2020, 109, 110287.	3.6	22
18	Transparent boron-doped zinc oxide films for antibacterial and magnetic applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 11911-11926.	2.2	21

#	Article	IF	CITATIONS
19	Tuning of optical and antibacterial characteristics of ZnO thin films: Role of Ce content. Ceramics International, 2019, 45, 3930-3939.	4.8	20
20	Probe of ZrTiO 2 thin films with TiO 2 -ZrO 2 binary oxides deposited by dip coating technique. Journal of Photochemistry and Photobiology B: Biology, 2018, 183, 357-366.	3.8	19
21	Impact of Ag doping on structural, optical, morphological, optical and photoluminescent properties of ZnO nanoparticles. Optical and Quantum Electronics, 2020, 52, 1.	3.3	19
22	Effect of Calcination on Properties of ZnO Nanoparticles. Materials Today: Proceedings, 2015, 2, 5468-5472.	1.8	17
23	Effect of in-situ oxidation on structure and ferromagnetic properties of Fe3Al and FeAl2O4 thin films prepared by electrodeposition. Ceramics International, 2018, 44, 9550-9560.	4.8	17
24	Structural, magnetic and optical investigations of Fe and Ni co-doped TiO2 dilute magnetic semiconductors. Ceramics International, 2018, 44, 17767-17774.	4.8	17
25	Biological and optical properties of sol–gel derived ZnO using different percentages of silver contents. Colloids and Surfaces B: Biointerfaces, 2018, 171, 383-390.	5.0	17
26	Investigation of structural, optical, antibacterial, and dielectric properties of V-doped copper oxide thin films: Comparison with undoped copper oxide thin films. Advanced Powder Technology, 2021, 32, 2345-2358.	4.1	17
27	Effect of Co doping on the physical properties of Co-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 5953-5961.	2.2	16
28	Characteristics of Al-doped ZnO:Ni films grown on glass by sol–gel dip coating technique. Journal of Saudi Chemical Society, 2017, 21, 425-433.	5.2	15
29	Dip-coated V doped ZnO thin films: Dielectric and magnetic properties. Ceramics International, 2020, 46, 14605-14612.	4.8	15
30	Structural and Magnetic Properties of Iron Doped ZnO Nanoparticles. Materials Today: Proceedings, 2015, 2, 5384-5389.	1.8	14
31	Structural confirmation and elucidation of optical, photo-catalytic and antibacterial properties of cerium doped Bi2O4. Journal of Physics and Chemistry of Solids, 2021, 155, 110104.	4.0	14
32	Structural, optical and magnetic properties of aluminum doped MnZnO films deposited by dip coating. Journal of Alloys and Compounds, 2016, 662, 489-496.	5.5	12
33	Magneto-dielectric properties of in-situ oxidized magnesium-aluminium spinel thin films using electrodeposition. Ceramics International, 2020, 46, 8588-8600.	4.8	12
34	Dielectric and magnetic properties of dilute magnetic semiconductors Ag-doped ZnO thin films. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	12
35	Antibacterial, magnetic and dielectric properties of nano-structured V doped TiO2 thin films deposited by dip coating technique. Materials Chemistry and Physics, 2021, 267, 124659.	4.0	12
36	An insight of physical and antibacterial properties of Au-doped ZnO dip coated thin films. Optical Materials, 2021, 118, 111276.	3.6	12

#	Article	IF	CITATIONS
37	Structural, Optical, and Magnetic Properties of Cobalt-Doped Dip Coated ZnO Films. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	11
38	Synthesis and Characterization of ZnO Nanoparticles. Materials Today: Proceedings, 2015, 2, 5619-5621.	1.8	11
39	Optical, magnetic and structural properties of Cr-doped ZnO thin films by sol–gel dip-coating method. Materials Research Express, 2017, 4, 096403.	1.6	11
40	Investigation of structural, optical and magnetic characteristics of Co3O4 thin films. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	11
41	Effect of Bi/Fe Ratio on the Structural and Magnetic Properties of BiFeO ₃ Thin Films by Sol-Gel. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	10
42	Sol-gel synthesized boron nitride (BN) thin films for antibacterial and magnetic applications. Optik, 2021, 243, 167502.	2.9	10
43	Analysis of the Nd dopant on optical, dielectric and biological properties of ZnO nanostructures. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105016.	3.1	10
44	Fabrication of Copper Oxide Nanoparticles by Sol-gel Route. Materials Today: Proceedings, 2015, 2, 5446-5449.	1.8	9
45	Deposition of porous titanium oxide thin films as anti-fogging and anti-reflecting medium. Optik, 2016, 127, 5124-5127.	2.9	9
46	Structural, Optical and Magnetic Properties of Nanocrystalline Co-Doped ZnO Thin Films Grown by Sol–Gel. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 73, 13-21.	1.5	9
47	Investigation of Fe doping on the magnetic and optical properties of ZnO thin films. Materials Research Express, 2018, 5, 036418.	1.6	9
48	Tailoring of optical, biological and magnetic properties of nanocrystalline Fe doped TiO ₂ thin films. Materials Research Express, 2019, 6, 1250h2.	1.6	9
49	Pulsed laser deposited Cobalt doped Ti0.9Fe0.1-xO2 thin films: Structural, morphological, magnetic, optical and electrical properties. Ceramics International, 2021, 47, 8555-8565.	4.8	9
50	Structural and Optical Study of NiO Nano-particles. Materials Today: Proceedings, 2015, 2, 5804-5807.	1.8	8
51	STRUCTURAL AND MAGNETIC PROPERTIES OF THIN FILM OF IRON NITRIDE. Surface Review and Letters, 2014, 21, 1450013.	1.1	7
52	Fabrication and characterization of nanocrystalline Al, Co:ZnO thin films by a sol–gel dip coating. Optical and Quantum Electronics, 2017, 49, 1.	3.3	7
53	Structural and magnetization crossover in electrodeposited FeAl ₂ O ₄ – effect of <i>in situ</i> oxidation. RSC Advances, 2019, 9, 38183-38194.	3.6	7
54	Microwave assisted tuning of optical and magnetic properties of zinc oxide nanorods—efficient antibacterial and photocatalytic agent. Journal of Sol-Gel Science and Technology, 2020, 95, 88-100.	2.4	7

#	Article	IF	CITATIONS
55	Structural, optical and magnetic properties of ZnO nanoparticles tailored by â€~La3+' ions. Optik, 2021, 244, 166816.	2.9	7
56	Structural, Optical and Magnetic Properties of Iron Oxide Nano-particles. Materials Today: Proceedings, 2015, 2, 5660-5663.	1.8	6
57	Effect of capping agent on microwave assisted sol-gel synthesized zirconia coatings for optical applications. Optik, 2020, 222, 165297.	2.9	6
58	Effect of Au ions on structural, optical, magnetic, dielectric, and antibacterial properties of TiO2Âdip-coated thin films. Journal of Materials Science: Materials in Electronics, 2021, 32, 14398-14419.	2.2	6
59	Dielectric and ferroelectric properties of X8R perovskite barium titanate for application in multilayered ceramics capacitors. Journal of Materials Science: Materials in Electronics, 2022, 33, 7405-7422.	2.2	6
60	Effect of Ce doping on crystallite size, band gap, dielectric and antibacterial properties of photocatalyst copper oxide Nano-structured thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115799.	3.5	6
61	Synthesis of 4-Alkyl-2′′, 3′′ difluoro terphenyl nitrile using coupling reactions. Journal of Molecular Liquids, 2012, 175, 72-84.	4.9	5
62	Structural and magnetic properties of FeCoNi thin films. Indian Journal of Physics, 2014, 88, 165-169.	1.8	5
63	Magnetic and Structural Phase Transition in Iron Oxide Nanostructures. Materials Today: Proceedings, 2015, 2, 5280-5287.	1.8	5
64	Preparation and characterization of dip coated cobalt oxide thin films. Materials Research Innovations, 2019, 23, 253-259.	2.3	5
65	Field emission properties and ferromagnetic exchange interactions in γ-Fe2O3 and Fe3O4 nanoneedles—oleic acid-assisted growth. Journal of Materials Science: Materials in Electronics, 2022, 33, 4025-4042.	2.2	5
66	Vanadium modified di-bismuth tetra-oxide thin films; synthesis, characterization and properties. Materials Chemistry and Physics, 2022, 282, 125944.	4.0	5
67	Effect of Calcination on Phase Transition in Iron Oxide Nanoparticles. Materials Today: Proceedings, 2015, 2, 5743-5747.	1.8	4
68	Optical and Magnetic Properties of Iron Oxide Thin Films. Materials Today: Proceedings, 2015, 2, 5568-5571.	1.8	4
69	Effect of aluminum doping concentration on optical, magnetic and microstructural properties of MnZnO thin films. Optik, 2017, 144, 172-179.	2.9	4
70	Influence of Al percentage on the magnetic, optical, and structural properties of Al-doped CoZnO thin films. Journal of the Australian Ceramic Society, 2019, 55, 479-487.	1.9	4
71	Development of novel chiral dopants to be used in ferroelectric liquid crystal system. Journal of Molecular Liquids, 2013, 180, 74-88.	4.9	3
72	STRUCTURAL AND MAGNETIC PROPERTIES OF THE THIN FILM OF COBALT NITRIDE. Surface Review and Letters, 2014, 21, 1450081.	1.1	3

#	Article	IF	CITATIONS
73	Role of co-doping on structural, optical and magnetic properties of nano-crystalline ZnO thin films. Materials Research Express, 2019, 6, 036404.	1.6	3
74	Dielectric and Magnetic Properties of Rare-Earth Metal Ce-Doped ZnO Thin Films. Journal of Electronic Materials, 2020, 49, 3114-3123.	2.2	3
75	Cyanoalkyl difluoro-terphenyl-carboxylate chiral dopants. Journal of Molecular Liquids, 2012, 170, 11-19.	4.9	2
76	Structural and Magnetic Properties of CoZnO Films. Materials Today: Proceedings, 2015, 2, 5473-5476.	1.8	2
77	Structural, Optical and Magnetic Properties of MnZnO Thin Films. Materials Today: Proceedings, 2015, 2, 5166-5169.	1.8	2
78	Study of Nickel Nitride Thin Films Deposited by Sol–Gel Route. Transactions of the Indian Institute of Metals, 2017, 70, 1097-1101.	1.5	2
79	Properties of NiZnO Thin Films with Different Amounts of Al Doping. Journal of Electronic Materials, 2017, 46, 5764-5772.	2.2	2
80	Influence of annealing temperature on the structural, optical, and magnetic properties of two-phase MnZnOx (xÂ=Â1, 3) thin films grown by a sol-gel method. Journal of the Australian Ceramic Society, 2017, 53, 863-874.	1.9	2
81	The effect of the withdrawal speed on properties of nickel oxide thin films. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 647-655.	0.8	2
82	Structure and Optical Properties of TiO2 Thin Films Prepared by a Sol-Gel Processing. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2019, 74, 635-642.	1.5	2
83	Structural and magnetic properties of nano-crystalline FeCoNiN thin films. Journal of Saudi Chemical Society, 2019, 23, 392-396.	5.2	1
84	Preparation of Thin Film of NiZnO by Sol-Gel Dip Coating. Materials Today: Proceedings, 2015, 2, 5607-5610.	1.8	0