Barbara Papadopoulou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5601101/publications.pdf

Version: 2024-02-01

57 papers

3,694 citations

32 h-index 56 g-index

91 all docs 91 docs citations

91 times ranked 3350 citing authors

#	Article	IF	CITATIONS
1	Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Neglected Tropical Diseases, 2017, 11, e0006052.	3.0	571
2	The Leishmania ATP-binding Cassette Protein PGPA Is an Intracellular Metal-Thiol Transporter ATPase. Journal of Biological Chemistry, 2001, 276, 26301-26307.	3.4	205
3	Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Current Opinion in Microbiology, 2007, 10, 569-577.	5.1	183
4	Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Molecular and Biochemical Parasitology, 2000, 110, 195-206.	1.1	150
5	A combined proteomic and transcriptomic approach to the study of stage differentiation inLeishmania infantum. Proteomics, 2006, 6, 3567-3581.	2.2	148
6	Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biology, 2008, 9, R115.	9.6	140
7	Genome-Wide Stochastic Adaptive DNA Amplification at Direct and Inverted DNA Repeats in the Parasite Leishmania. PLoS Biology, 2014, 12, e1001868.	5.6	130
8	Role of the ABC Transporter MRPA (PGPA) in Antimony Resistance in Leishmania infantum Axenic and Intracellular Amastigotes. Antimicrobial Agents and Chemotherapy, 2005, 49, 1988-1993.	3.2	125
9	Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics, 2008, 9, 255.	2.8	122
10	A Common Mechanism of Stage-regulated Gene Expression in Leishmania Mediated by a Conserved 3′-Untranslated Region Element. Journal of Biological Chemistry, 2002, 277, 19511-19520.	3.4	115
11	Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research, 2016, 5, 2350.	1.6	111
12	A proteomic approach to identify developmentally regulated proteins in Leishmania infantum. Proteomics, 2002, 2, 1007.	2.2	107
13	DNA Transformation of Leishmania infantum Axenic Amastigotes and Their Use in Drug Screening. Antimicrobial Agents and Chemotherapy, 2001, 45, 1168-1173.	3.2	102
14	Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Molecular and Biochemical Parasitology, 2009, 165, 32-47.	1.1	95
15	Characterization and developmental gene regulation of a large gene family encoding amastin surface proteins in Leishmania spp Molecular and Biochemical Parasitology, 2005, 140, 205-220.	1.1	88
16	Members of a Large Retroposon Family Are Determinants of Post-Transcriptional Gene Expression in Leishmania. PLoS Pathogens, 2007, 3, e136.	4.7	87
17	Autonomous replication of bacterial DNA plasmid oligomers in Leishmania. Molecular and Biochemical Parasitology, 1994, 65, 39-49.	1.1	83
18	Distinct 3′-Untranslated Region Elements Regulate Stage-specific mRNA Accumulation and Translation in Leishmania. Journal of Biological Chemistry, 2005, 280, 35238-35246.	3.4	82

#	Article	IF	CITATIONS
19	Enhanced Protective Efficacy of Nonpathogenic Recombinant Leishmania tarentolae Expressing Cysteine Proteinases Combined with a Sand Fly Salivary Antigen. PLoS Neglected Tropical Diseases, 2014, 8, e2751.	3.0	71
20	Frequent amplification of a short chain dehydrogenase gene as part of circular and linear amplicons in methortexate resistant Lesihmania. Nucleic Acids Research, 1993, 21, 4305-4312.	14.5	68
21	Parameters controlling the rate of gene targeting frequency in the protozoan parasite Leishmania. Nucleic Acids Research, 1997, 25, 4278-4286.	14.5	60
22	Translational Control through eIF2alpha Phosphorylation during the Leishmania Differentiation Process. PLoS ONE, 2012, 7, e35085.	2.5	56
23	Promastigote to amastigote differentiation of Leishmania is markedly delayed in the absence of PERK elF2alpha kinase-dependent elF2alpha phosphorylation. Cellular Microbiology, 2011, 13, 1059-1077.	2.1	54
24	Coordinated gene expression by post-transcriptional regulons in African trypanosomes. Journal of Biology, 2009, 8, 100.	2.7	52
25	Prefractionation by Digitonin Extraction Increases Representation of the Cytosolic and Intracellular Proteome ofLeishmaniainfantum. Journal of Proteome Research, 2006, 5, 1741-1750.	3.7	48
26	A recombinant non-pathogenic Leishmania vaccine expressing human immunodeficiency virus 1 (HIV-1) Gag elicits cell-mediated immunity in mice and decreases HIV-1 replication in human tonsillar tissue following exposure to HIV-1 infection. Journal of General Virology, 2007, 88, 217-225.	2.9	45
27	Developmental Regulation of Spliced Leader RNA Gene inLeishmania donovani Amastigotes Is Mediated by Specific Polyadenylation. Journal of Biological Chemistry, 1999, 274, 6602-6609.	3.4	44
28	Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development. PLoS ONE, 2015, 10, e0137243.	2.5	44
29	Organization and evolution of two SIDER retroposon subfamilies and their impact on the Leishmania genome. BMC Genomics, 2009, 10, 240.	2.8	40
30	An <scp>Alba</scp> â€domain protein contributes to the stageâ€regulated stability of amastin transcripts in <i><scp>L</scp>eishmania</i> . Molecular Microbiology, 2014, 91, 548-561.	2.5	38
31	Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutationsÂin Leishmania. Nature Communications, 2019, 10, 5627.	12.8	37
32	Species-Specific Antimonial Sensitivity in Leishmania Is Driven by Post-Transcriptional Regulation of AQP1. PLoS Neglected Tropical Diseases, 2015, 9, e0003500.	3.0	35
33	Role of transposable elements in trypanosomatids. Microbes and Infection, 2008, 10, 575-581.	1.9	34
34	Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis. PLoS ONE, 2015, 10, e0132794.	2.5	34
35	DDX3 DEAD-box RNA helicase plays a central role in mitochondrial protein quality control in Leishmania. Cell Death and Disease, 2016, 7, e2406-e2406.	6.3	31
36	Immunological comparison of DNA vaccination using two delivery systems against canine leishmaniasis. Veterinary Parasitology, 2015, 212, 130-139.	1.8	28

#	Article	IF	Citations
37	Deadenylation-independent stage-specific mRNA degradation in Leishmania. Nucleic Acids Research, 2008, 36, 1634-1644.	14.5	27
38	Rapid decay of unstable Leishmania mRNAs bearing a conserved retroposon signature 3′-UTR motif is initiated by a site-specific endonucleolytic cleavage without prior deadenylation. Nucleic Acids Research, 2010, 38, 5867-5883.	14.5	27
39	In primary human monocyte-derived macrophages exposed to Human immunodeficiency virus type 1, does the increased intracellular growth of Leishmania infantum rely on its enhanced uptake?. Journal of General Virology, 2006, 87, 1295-1302.	2.9	22
40	Drug resistance in Leishmania: similarities and differences to other organisms. Drug Resistance Updates, 1998, 1, 266-278.	14.4	20
41	The unique Leishmania EIF4E4ÂN-terminus is a target for multiple phosphorylation events and participates in critical interactions required for translation initiation. RNA Biology, 2015, 12, 1209-1221.	3.1	18
42	Selective inactivation of SIDER2 retroposonâ€mediated mRNA decay contributes to stage―and speciesâ€specific gene expression in <i>Leishmania</i> . Molecular Microbiology, 2010, 77, 471-491.	2.5	16
43	Novel Features of a PIWI-Like Protein Homolog in the Parasitic Protozoan Leishmania. PLoS ONE, 2012, 7, e52612.	2.5	15
44	Adjuvanted inactivated influenza A(H3N2) vaccines induce stronger immunogenicity in mice and confer higher protection in ferrets than unadjuvanted inactivated vaccines. Vaccine, 2014, 32, 5730-5739.	3.8	13
45	Phosphorylation and interactions associated with the control of theLeishmaniaPoly-A Binding Protein 1 (PABP1) function during translation initiation. RNA Biology, 2018, 15, 1-17.	3.1	12
46	Stage-specific expression of the glycine cleavage complex subunits in Leishmania infantum. Molecular and Biochemical Parasitology, 2010, 170, 17-27.	1.1	9
47	The Pumilio-domain protein PUF6 contributes to SIDER2 retroposon-mediated mRNA decay in <i>Leishmania</i> . Rna, 2017, 23, 1874-1885.	3.5	8
48	Genetic depletion of the RNA helicase DDX3 leads to impaired elongation of translating ribosomes triggering co-translational quality control of newly synthesized polypeptides. Nucleic Acids Research, 2021, 49, 9459-9478.	14.5	8
49	Identification of novel proteins and mRNAs differentially bound to the Leishmania Poly(A) Binding Proteins reveals a direct association between PABP1, the RNA-binding protein RBP23 and mRNAs encoding ribosomal proteins. PLoS Neglected Tropical Diseases, 2021, 15, e0009899.	3.0	8
50	Valosin-containing protein VCP/p97 is essential for the intracellular development of <i>Leishmania</i> and its survival under heat stress. Cellular Microbiology, 2018, 20, e12867.	2.1	7
51	New insights in the mode of action of anti-leishmanial drugs by using chemical mutagenesis screens coupled to next-generation sequencing. Microbial Cell, 2020, 7, 59-61.	3.2	6
52	Chromosome structure and sequence organization between pathogenic and non-pathogenic Leishmania spp. Molecular and Biochemical Parasitology, 2000, 111, 401-414.	1.1	5
53	RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation. PLoS ONE, 2017, 12, e0180678.	2.5	3
54	The AAA + ATPase valosin-containing protein (VCP)/p97/Cdc48 interaction network in Leishmania. Scientific Reports, 2020, 10, 13135.	3.3	3

#	Article	IF	CITATIONS
55	SIDER2 retroposon-mediated mRNA decay in Leishmania is coupled to translation. International Journal for Parasitology, 2017, 47, 305-310.	3.1	2
56	Approaches for Studying mRNA Decay Mediated by SIDER2 Retroposons in Leishmania. Methods in Molecular Biology, 2015, 1201, 123-142.	0.9	1
57	In Vivo Tethering System to Isolate RNA-Binding Proteins Regulating mRNA Decay in Leishmania. Methods in Molecular Biology, 2020, 2116, 325-338.	0.9	1