Zehua Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5600947/publications.pdf

Version: 2024-02-01

516710 839539 21 506 16 18 citations h-index g-index papers 21 21 21 470 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Effect of Sr Surface Segregation of La _{0.6} Sr _{O.4} Co _{0.2} Fe _{0.8} O _{3 â^³ δ} Electrode on Its Electrochemical Performance in SOC. Journal of the Electrochemical Society, 2015, 162, F1316-F1323.	2.9	72
2	Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode. Applied Energy, 2017, 191, 559-567.	10.1	49
3	Thermodynamic analyses of synthetic natural gas production via municipal solid waste gasification, high-temperature water electrolysis and methanation. Energy Conversion and Management, 2019, 202, 112160.	9.2	46
4	Activation and failure mechanism of La0.6Sr0.4Co0.2Fe0.8O3â^Î air electrode in solid oxide electrolyzer cells under high-current electrolysis. International Journal of Hydrogen Energy, 2018, 43, 5437-5450.	7.1	45
5	High-yield electrochemical upgrading of CO2 into CH4 using large-area protonic ceramic electrolysis cells. Applied Catalysis B: Environmental 2022 307 12119 Math/Math/ML" altimg="si1.gif"	20.2	41
6	overflow="scroll"> <mml:mrow><mml:mi mathvariant="normal">L</mml:mi><mml:msub><mml:mi mathvariant="normal">a</mml:mi><mml:mrow><mml:mn>0.6</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:msub><mml:mi mathvariant="normal">r</mml:mi><mml:mrow><mml:mn>0.4</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant="normal">r</mml:mi><mml:msub><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:msub><mml:mi< td=""><td>7.8</td><td>29</td></mml:mi<></mml:msub></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:msub></mml:mrow>	7.8	29
7	mathvariant="normal">ox/mml:mi>xmml:mro A comparative study on environmental performance of 3D printing and conventional casting of concrete products with industrial wastes. Chemosphere, 2022, 298, 134310.	8.2	26
8	Study of Activation Effect of Anodic Current on La0.6Sr0.4Co0.2Fe0.8O3â^'δ Air Electrode in Solid Oxide Electrolyzer Cell. Electrochimica Acta, 2016, 209, 56-64.	5.2	22
9	Electrochemical CO2 reduction to CO using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode. Energy, 2021, 228, 120579.	8.8	22
10	Regenerable Co-ZnO-based nanocomposites for high-temperature syngas desulfurization. Fuel Processing Technology, 2020, 201, 106344.	7.2	20
11	On the delamination of air electrodes of solid oxide electrolysis cells: A mini-review. Electrochemistry Communications, 2022, 137, 107267.	4.7	20
12	Ca and Fe co-doped SmBaCo2O5Â+Â layered perovskite as an efficient cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2017, 696, 964-970.	5.5	19
13	A Ca and Fe Co-Doped Layered Perovskite as Stable Air Electrode in Solid Oxide Electrolyzer Cells under High-Current Electrolysis. Electrochimica Acta, 2017, 251, 581-587.	5.2	19
14	High-temperature electrolysis of simulated flue gas in solid oxide electrolysis cells. Electrochimica Acta, 2018, 280, 206-215.	5.2	19
15	Influence of pore former on electrochemical performance of fuel-electrode supported SOFCs manufactured by aqueous-based tape-casting. Energy, 2016, 115, 149-154.	8.8	18
16	Thermodynamic analyses of a standalone diesel-fueled distributed power generation system based on solid oxide fuel cells. Applied Energy, 2022, 308, 118396.	10.1	18
17	Highly active and stable A-site Pr-doped LaSrCrMnO-based fuel electrode for direct CO2 solid oxide electrolyzer cells. International Journal of Hydrogen Energy, 2020, 45, 14648-14659.	7.1	16
18	Predictions on conductivity and mechanical property evolutions of yttria-stabilized zirconia in solid oxide fuel cells based on phase-field modeling of cubic-tetragonal phase transformation. Journal of the European Ceramic Society, 2022, 42, 3489-3499.	5.7	5

ZEHUA PAN

#	Article	IF	CITATIONS
19	The Sabatier Electrolyzer: Harnessing Proton-Conducting Ceramics to Upgrade Carbon Dioxide into Methane. ECS Meeting Abstracts, 2020, MA2020-01, 1485-1485.	0.0	O
20	The Sabatier Electrolyzer: Harnessing Proton-Conducting Ceramics to Upgrade Carbon Dioxide into Methane. ECS Meeting Abstracts, 2020, MA2020-02, 2520-2520.	0.0	0
21	(Invited) Applications of Protonic Ceramics for Electrochemical Energy Conversion and Storage. ECS Meeting Abstracts, 2020, MA2020-02, 2518-2518.	0.0	0