Francisco Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5600709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomimetic Silk Macroporous Materials for Drug Delivery Obtained via Ice-Templating. ACS Applied Bio Materials, 2022, 5, 2556-2566.	4.6	6
2	Recent advances in ice templating: from biomimetic composites to cell culture scaffolds and tissue engineering. Journal of Materials Chemistry B, 2021, 9, 889-907.	5.8	39
3	Biomimetic Tough Gels with Weak Bonds Unravel the Role of Collagen from Fibril to Suprafibrillar Selfâ€Assembly. Macromolecular Bioscience, 2021, 21, 2000435.	4.1	3
4	Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay-Based Nanoarchitectured Materials. Frontiers in Chemistry, 2021, 9, 733105.	3.6	12
5	Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200344.	3.4	10
6	Preservation of biomaterials and cells by freeze-drying: Change of paradigm. Journal of Controlled Release, 2021, 336, 480-498.	9.9	62
7	Selfâ€Assembled Collagen Microparticles by Aerosol as a Versatile Platform for Injectable Anisotropic Materials. Small, 2020, 16, e1902224.	10.0	11
8	Unveiling Cells' Local Environment during Cryopreservation by Correlative <i>In Situ</i> Spatial and Thermal Analyses. Journal of Physical Chemistry Letters, 2020, 11, 7730-7738.	4.6	6
9	Plant cell wall inspired xyloglucan/cellulose nanocrystals aerogels produced by freeze-casting. Carbohydrate Polymers, 2020, 247, 116642.	10.2	38
10	Unveiling the Interstitial Pressure between Growing Ice Crystals during Ice-Templating Using a Lipid Lamellar Probe. Journal of Physical Chemistry Letters, 2020, 11, 1989-1997.	4.6	8
11	Soft lamellar solid foams from ice-templating of self-assembled lipid hydrogels: organization drives the mechanical properties. Materials Horizons, 2019, 6, 2073-2086.	12.2	20
12	Topotactic Fibrillogenesis of Freeze-Cast Microridged Collagen Scaffolds for 3D Cell Culture. ACS Applied Materials & Interfaces, 2019, 11, 14672-14683.	8.0	46
13	Phenolic Imidazole Derivatives with Dual Antioxidant/Antifungal Activity: Synthesis and Structure-Activity Relationship. Medicinal Chemistry, 2019, 15, 341-351.	1.5	9
14	The Meeting Point of Carbonaceous Materials and Clays: Toward a New Generation of Functional Composites. Advanced Functional Materials, 2018, 28, 1704323.	14.9	32
15	New Nitrogen Compounds Coupled to Phenolic Units with Antioxidant and Antifungal Activities: Synthesis and Structure–Activity Relationship. Molecules, 2018, 23, 2530.	3.8	9
16	lce-templating beet-root pectin foams: Controlling texture, mechanics and capillary properties. Chemical Engineering Journal, 2018, 350, 20-28.	12.7	20
17	Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties. Journal of Chemical Physics, 2017, 146, 144504.	3.0	3
18	Microsphere Solid‧tate Biolasers. Advanced Optical Materials, 2017, 5, 1601022.	7.3	31

FRANCISCO FERNANDES

#	Article	IF	CITATIONS
19	Guest editors' preface. Journal of Materials Science, 2017, 52, 11121-11123.	3.7	Ο
20	Conducting macroporous carbon foams derived from microwave-generated caramel/silica gel intermediates. Journal of Materials Science, 2017, 52, 11269-11281.	3.7	15
21	Cellularized Cellular Solids via Freezeâ€Casting. Macromolecular Bioscience, 2016, 16, 182-187.	4.1	16
22	Immobilization of Proteins in Biopolymer-Silica Hybrid Materials: Functional Properties and Applications. Current Organic Chemistry, 2015, 19, 1669-1676.	1.6	4
23	Self-Assembly in Biosilicification and Biotemplated Silica Materials. Nanomaterials, 2014, 4, 792-812.	4.1	33
24	Elastic properties of natural single nanofibres. RSC Advances, 2014, 4, 11225.	3.6	10
25	Assembling nanotubes and nanofibres: Cooperativeness in sepiolite–carbon nanotube materials. Carbon, 2014, 72, 296-303.	10.3	32
26	Integrative strategies to hybrid lamellar compounds: an integration challenge. Applied Clay Science, 2014, 100, 2-21.	5.2	48
27	Progress in Bionanocomposites: From green plastics to biomedical applications. Progress in Polymer Science, 2013, 38, 1391.	24.7	21
28	Water-mediated structuring of bone apatite. Nature Materials, 2013, 12, 1144-1153.	27.5	250
29	Fibrous Clay Mineral–Polymer Nanocomposites. Developments in Clay Science, 2013, 5, 721-741.	0.5	17
30	Fibrous clays based bionanocomposites. Progress in Polymer Science, 2013, 38, 1392-1414.	24.7	209
31	Silica-Sepiolite Nanoarchitectures. Journal of Nanoscience and Nanotechnology, 2013, 13, 2897-2907.	0.9	30
32	Advanced biohybrid materials based on nanoclays for biomedical applications. Proceedings of SPIE, 2012, , .	0.8	9
33	Synthesis and electrochemical evaluation of substituted imidazo[4,5-d]pyrrolo[3,2-f][1,3] diazepine scaffolds. Tetrahedron, 2012, 68, 4628-4634.	1.9	8
34	Gelatin renaturation and the interfacial role of fillers in bionanocomposites. Physical Chemistry Chemical Physics, 2011, 13, 4901-4910.	2.8	43
35	Multifunctional Porous Materials Through Ferrofluids. Advanced Materials, 2011, 23, 5224-5228.	21.0	42
36	Supported Graphene from Natural Resources: Easy Preparation and Applications. Advanced Materials, 2011, 23, 5250-5255.	21.0	149

FRANCISCO FERNANDES

#	Article	IF	CITATIONS
37	Gelatin-Clay Bio-Nanocomposites: Structural and Functional Properties as Advanced Materials. Journal of Nanoscience and Nanotechnology, 2009, 9, 221-229.	0.9	52
38	Design and preparation of bionanocomposites based on layered solids with functional and structural properties. Materials Science and Technology, 2008, 24, 1100-1110.	1.6	32
39	The 1,3-Dipolar Cycloaddition Reaction in the Functionalization of Carbon Nanofibers. Journal of Nanoscience and Nanotechnology, 2007, 7, 3441-3445.	0.9	18
40	Functionalization of Carbon Nanofibers by a Diels-Alder Addition Reaction. Journal of Nanoscience and Nanotechnology, 2007, 7, 3514-3518.	0.9	13
41	General Contribution of Nonspecific Interactions to Fluorescence Intensity. Analytical Chemistry, 2006, 78, 3699-3705.	6.5	21