## JÃ<sup>3</sup>zef Oleksyszyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5600445/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Diisothiocyanate-Derived Mercapturic Acids Are a Promising Partner for Combination Therapies in<br>Glioblastoma. ACS Omega, 2022, 7, 5929-5936.                                                                | 3.5 | 0         |
| 2  | Phosphonic Analogs of Alanine as Acylpeptide Hydrolase Inhibitors. Chemistry and Biodiversity, 2021, 18, e2001004.                                                                                             | 2.1 | 0         |
| 3  | Structure-based design, synthesis, and evaluation of the biological activity of novel phosphoroorganic small molecule IAP antagonists. Investigational New Drugs, 2020, 38, 1350-1364.                         | 2.6 | 3         |
| 4  | 3,4-dimethoxybenzyl isothiocyanate enhances doxorubicin efficacy in LoVoDX doxorubicin-resistant colon cancer and attenuates its toxicity in vivo. Life Sciences, 2019, 231, 116530.                           | 4.3 | 8         |
| 5  | Development and Evaluation of an Immunoglobulin Y-Based ELISA for Measuring Prostate Specific<br>Antigen in Human Serum. Annals of Laboratory Medicine, 2019, 39, 373-380.                                     | 2.5 | 17        |
| 6  | Phosphonate inhibitors of West Nile virus NS2B/NS3 protease. Journal of Enzyme Inhibition and<br>Medicinal Chemistry, 2019, 34, 8-14.                                                                          | 5.2 | 14        |
| 7  | Design, Synthesis, and Evaluation of ï‰â€(Isothiocyanato)alkylphosphinates and Phosphine Oxides as<br>Antiproliferative Agents. ChemMedChem, 2018, 13, 105-115.                                                | 3.2 | 10        |
| 8  | Development of Adenosine Deaminase-Specific IgY Antibodies: Diagnostic and Inhibitory Application.<br>Applied Biochemistry and Biotechnology, 2018, 184, 1358-1374.                                            | 2.9 | 11        |
| 9  | Viability of glioblastoma stem cells is effectively reduced by diisothiocyanate‑derived mercapturic<br>acids. Oncology Letters, 2018, 16, 6181-6187.                                                           | 1.8 | 2         |
| 10 | Phosphorus-containing isothiocyanate-derived mercapturic acids as a useful alternative for parental isothiocyanates in experimental oncology. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2611-2615. | 2.2 | 3         |
| 11 | Novel phosphonate analogs of sulforaphane: Synthesis, inÂvitro and inÂvivo anticancer activity.<br>European Journal of Medicinal Chemistry, 2017, 132, 63-80.                                                  | 5.5 | 27        |
| 12 | Novel peptidyl α-aminoalkylphosphonates as inhibitors of hepatitis C virus NS3/4A protease. Antiviral<br>Research, 2017, 144, 286-298.                                                                         | 4.1 | 5         |
| 13 | Synthesis and biological activity of diisothiocyanate-derived mercapturic acids. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 667-671.                                                                | 2.2 | 14        |
| 14 | Method for generation of peptideâ€specific igy antibodies directed to <i>Staphylococcus aureus</i> extracellular fibrinogen binding protein epitope. Biopolymers, 2015, 104, 552-559.                          | 2.4 | 12        |
| 15 | Adjuvant-dependent immunogenicity of Staphylococcus aureus Efb and Map proteins in chickens.<br>Veterinary Immunology and Immunopathology, 2015, 166, 50-56.                                                   | 1.2 | 3         |
| 16 | Generation and application of polyclonal IgY antibodies specific for full-length and nicked prostate-specific antigen. Bioanalysis, 2014, 6, 3197-3213.                                                        | 1.5 | 12        |
| 17 | Development and binding characteristics of phosphonate inhibitors of SplA protease from <i>Staphylococcus aureus</i> . Protein Science, 2014, 23, 179-189.                                                     | 7.6 | 11        |
| 18 | Substrate profiling of Finegoldia magna SufA protease, inhibitor screening and application to prevent human fibrinogen degradation and bacteria growth inÂvitro. Biochimie, 2014, 103, 137-143.                | 2.6 | 6         |

JÃ<sup>3</sup>zef Oleksyszyn

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A convenient method for the one-step synthesis of phosphonic peptides. Tetrahedron Letters, 2013, 54, 4975-4977.                                                                                                                                          | 1.4 | 9         |
| 20 | Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to <i><scp>C</scp>hlamydia trachomatis</i> . Molecular Microbiology, 2013, 89, 676-689.                                                              | 2.5 | 55        |
| 21 | Efficient methods for the synthesis of α-aminophosphonate fluoroalkyl esters. Tetrahedron Letters, 2013, 54, 1566-1568.                                                                                                                                   | 1.4 | 12        |
| 22 | Phosphonic analogues of glutamic acid as irreversible inhibitors of Staphylococcus aureus<br>endoproteinase GluC: An efficient synthesis and inhibition of the human IgG degradation. Bioorganic<br>and Medicinal Chemistry Letters, 2013, 23, 1412-1415. | 2.2 | 16        |
| 23 | Convenient syntheses of novel 1-isothiocyano-alkylphosphonate diphenyl ester derivatives with potential biological activity. Tetrahedron Letters, 2012, 53, 5845-5847.                                                                                    | 1.4 | 8         |
| 24 | Human Neutrophil Elastase Phosphonic Inhibitors with Improved Potency of Action. Journal of<br>Medicinal Chemistry, 2012, 55, 6541-6553.                                                                                                                  | 6.4 | 46        |
| 25 | The complete control of glucose level utilizing the composition of ketogenic diet with the gluconeogenesis inhibitor, the anti-diabetic drug metformin, as a potential anti-cancer therapy. Medical Hypotheses, 2011, 77, 171-173.                        | 1.5 | 18        |
| 26 | Invariant chain processing is independent of cathepsin variation between primary human B<br>cells/dendritic cells and B-lymphoblastoid cells. Cellular Immunology, 2011, 269, 96-103.                                                                     | 3.0 | 6         |
| 27 | Phosphonic pseudopeptides as human neutrophil elastase inhibitors—a combinatorial approach.<br>Bioorganic and Medicinal Chemistry, 2011, 19, 1277-1284.                                                                                                   | 3.0 | 16        |
| 28 | Simple phosphonic inhibitors of human neutrophil elastase. Bioorganic and Medicinal Chemistry<br>Letters, 2011, 21, 1310-1314.                                                                                                                            | 2.2 | 20        |
| 29 | Synthesis and antiproliferative activity of novel α- and β-dialkoxyphosphoryl isothiocyanates.<br>Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4572-4576.                                                                                        | 2.2 | 16        |
| 30 | New aromatic monoesters of α-aminoaralkylphosphonic acids as inhibitors of aminopeptidase N/CD13.<br>Bioorganic and Medicinal Chemistry, 2010, 18, 2930-2936.                                                                                             | 3.0 | 10        |
| 31 | Identification of very potent inhibitor of human aminopeptidase N (CD13). Bioorganic and Medicinal<br>Chemistry Letters, 2010, 20, 2497-2499.                                                                                                             | 2.2 | 25        |
| 32 | Application of specific cell permeable cathepsin G inhibitors resulted in reduced antigen processing in primary dendritic cells. Molecular Immunology, 2009, 46, 2994-2999.                                                                               | 2.2 | 24        |
| 33 | Comparision of the Cytotoxic Effects of Birch Bark Extract, Betulin and Betulinic Acid Towards<br>Human Gastric Carcinoma and Pancreatic Carcinoma Drug-sensitive and Drug-Resistant Cell Lines.<br>Molecules, 2009, 14, 1639-1651.                       | 3.8 | 71        |
| 34 | New potent cathepsin G phosphonate inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 8863-8867.                                                                                                                                                   | 3.0 | 21        |
| 35 | First synthesis of α-aminoalkyl-(N-substituted)thiocarbamoyl-phosphinates: Inhibitors of aminopeptidase N (APN/CD13) with the new zinc-binding group. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3734-3736.                                    | 2.2 | 18        |
| 36 | Novel hydroxamic acid-related phosphinates: Inhibition of neutral aminopeptidase N (APN). Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1516-1519.                                                                                                | 2.2 | 22        |

JÃ<sup>3</sup>zef Oleksyszyn

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The molecular basis of urokinase inhibition: from the nonempirical analysis of intermolecular interactions to the prediction of binding affinity. Journal of Molecular Modeling, 2007, 13, 677-683.                                                        | 1.8 | 19        |
| 38 | Inhibition of trypsin and urokinase by Cbz-amino(4-guanidinophenyl)methanephosphonate aromatic<br>ester derivatives: The influence of the ester group on their biological activity. Bioorganic and<br>Medicinal Chemistry Letters, 2006, 16, 2886-2890.    | 2.2 | 43        |
| 39 | Synthesis of isocyanide derivatives of α-aminoalkylphosphonate diphenyl esters. Tetrahedron Letters,<br>2006, 47, 4209-4211.                                                                                                                               | 1.4 | 7         |
| 40 | Facile Synthesis of bisâ€Î±â€Aminoalkylphosphinates. Synthetic Communications, 2006, 36, 2787-2795.                                                                                                                                                        | 2.1 | 8         |
| 41 | Synthesis of α1-(Cbz-aminoalkyl)-α2-(hydroxyalkyl)phosphinic esters. Tetrahedron Letters, 2005, 46, 3359-3362.                                                                                                                                             | 1.4 | 21        |
| 42 | A convenient synthesis of new α-aminoalkylphosphonates, aromatic analogues of arginine as inhibitors<br>of trypsin-like enzymes. Tetrahedron Letters, 2004, 45, 7251-7254.                                                                                 | 1.4 | 22        |
| 43 | Mechanism-Based Isocoumarin Inhibitors for Human Leukocyte Elastase. Effect of the 7-Amino<br>Substituent and 3-Alkoxy Group in 3-Alkoxy-7-amino-4-chloroisocoumarins on Inhibitory Potency.<br>Journal of Medicinal Chemistry, 1995, 38, 544-552.         | 6.4 | 44        |
| 44 | [30] Amino acid and peptide phosphonate derivatives as specific inhibitors of serine peptidases.<br>Methods in Enzymology, 1994, 244, 423-441.                                                                                                             | 1.0 | 82        |
| 45 | Dipeptide Phosphonates as Inhibitors of Dipeptidyl Peptidase IV. Journal of Medicinal Chemistry, 1994, 37, 3969-3976.                                                                                                                                      | 6.4 | 100       |
| 46 | Novel amidine-containing peptidyl phosphonates as irreversible inhibitors for blood coagulation and related serine proteases. Journal of Medicinal Chemistry, 1994, 37, 226-231.                                                                           | 6.4 | 100       |
| 47 | inhibitors for porcine pancreatic and human neutrophil elastases: a 1.85ANG. x-ray structure of the complex between porcine pancreatic elastase and<br>7-[(N-tosylphenylalanyl)amino]-4-chloro-3-methoxyisocoumarin. Journal of Medicinal Chemistry, 1992, | 6.4 | 29        |
| 48 | 35, 1121-1129.<br>Irreversible inhibition of serine proteases by peptide derivatives of (.alphaaminoalkyl)phosphonate<br>diphenyl esters. Biochemistry, 1991, 30, 485-493.                                                                                 | 2.5 | 197       |
| 49 | Irreversible inhibition of serine proteases by peptidyl derivatives of α-aminoalkylphosphonate diphenyl esters. Biochemical and Biophysical Research Communications, 1989, 161, 143-149.                                                                   | 2.1 | 50        |
| 50 | Amidoalkylation of phosphorous acid. Tetrahedron Letters, 1981, 22, 3537-3540.                                                                                                                                                                             | 1.4 | 30        |
| 51 | Diphenyl 1-Aminoalkanephosphonates. Synthesis, 1979, 1979, 985-986.                                                                                                                                                                                        | 2.3 | 124       |