
Alexander Graf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5600405/publications.pdf Version: 2024-02-01

ALEYANDED COAE

#	Article	IF	CITATIONS
1	A dominant mutation in <i>β-AMYLASE1</i> disrupts nighttime control of starch degradation in Arabidopsis leaves. Plant Physiology, 2022, 188, 1979-1992.	2.3	3
2	Sulfur deficiency-induced genes affect seed protein accumulation and composition under sulfate deprivation. Plant Physiology, 2021, 187, 2419-2434.	2.3	20
3	Topology of the redox network during induction of photosynthesis as revealed by time-resolved proteomics in tobacco. Science Advances, 2021, 7, eabi8307.	4.7	27
4	FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis. Plant Journal, 2020, 104, 7-17.	2.8	29
5	Separation and Paired Proteome Profiling of Plant Chloroplast and Cytoplasmic Ribosomes. Plants, 2020, 9, 892.	1.6	12
6	A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts. Nature Communications, 2020, 11, 4509.	5.8	47
7	LIKE SEX4 1 Acts as a \hat{l}^2 -Amylase-Binding Scaffold on Starch Granules during Starch Degradation. Plant Cell, 2019, 31, 2169-2186.	3.1	26
8	Protein Complex Identification and quantitative complexome by CN-PAGE. Scientific Reports, 2019, 9, 11523.	1.6	24
9	Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana. Scientific Reports, 2019, 9, 2289.	1.6	51
10	Genetic buffering of cyclic <scp>AMP</scp> in <i>Arabidopsis thaliana</i> compromises the plant immune response triggered by an avirulent strain of <i>Pseudomonas syringae</i> pv. <i>tomato</i> . Plant Journal, 2019, 98, 590-606.	2.8	32
11	Photoperiodic control of the <i>Arabidopsis</i> proteome reveals a translational coincidence mechanism. Molecular Systems Biology, 2018, 14, e7962.	3.2	74
12	Interaction of 2',3'-cAMP with Rbp47b plays a role in stress granule formation. Plant Physiology, 2018, 177, pp.00285.2018.	2.3	36
13	Temporal Proteomics of Inducible RNAi Lines of Clp Protease Subunits Identifies Putative Protease Substrates. Plant Physiology, 2018, 176, 1485-1508.	2.3	37
14	PROMIS, global analysis of PROtein–metabolite interactions using size separation in Arabidopsis thaliana. Journal of Biological Chemistry, 2018, 293, 12440-12453.	1.6	55
15	The Extra-Pathway Interactome of the TCA Cycle: Expected and Unexpected Metabolic Interactions. Plant Physiology, 2018, 177, 966-979.	2.3	81
16	<i>AtRsgA</i> from <i>Arabidopsis thaliana</i> is important for maturation of the small subunit of the chloroplast ribosome. Plant Journal, 2018, 96, 404-420.	2.8	9
17	Dynamic and spatial restriction of Polycomb activity by plant histone demethylases. Nature Plants, 2018, 4, 681-689.	4.7	64
18	Hit-Gel: Streamlining in-gel protein digestion for high-throughput proteomics experiments. Scientific Reports, 2018, 8, 8582.	1.6	13

ALEXANDER GRAF

#	Article	IF	CITATIONS
19	Parallel analysis of <i>Arabidopsis</i> circadian clock mutants reveals different scales of transcriptome and proteome regulation. Open Biology, 2017, 7, 160333.	1.5	52
20	Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nature Communications, 2017, 8, 15212.	5.8	103
21	Constitutive cyclic GMP accumulation in Arabidopsis thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals. Scientific Reports, 2016, 6, 36423.	1.6	27
22	The Starch Granule-Associated Protein EARLY STARVATION1 Is Required for the Control of Starch Degradation in <i>Arabidopsis thaliana</i> Leaves. Plant Cell, 2016, 28, 1472-1489.	3.1	64
23	<i>Arabidopsis </i> <scp>CERANYLGERANYL DIPHOSPHATE SYNTHASE</scp> 11 is a hub isozyme required for the production of most photosynthesisâ€related isoprenoids. New Phytologist, 2016, 209, 252-264.	3.5	131
24	Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. ELife, 2016, 5, .	2.8	152
25	Glucan, Water Dikinase Exerts Little Control over Starch Degradation in Arabidopsis Leaves at Night Â. Plant Physiology, 2014, 165, 866-879.	2.3	65
26	Arabidopsis plants perform arithmetic division to prevent starvation at night. ELife, 2013, 2, e00669.	2.8	134
27	Starch and the clock: the dark side of plant productivity. Trends in Plant Science, 2011, 16, 169-175.	4.3	235
28	Circadian control of root elongation and C partitioning in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2011, 34, 877-894.	2.8	145
29	Callose Synthase GSL7 Is Necessary for Normal Phloem Transport and Inflorescence Growth in Arabidopsis Â. Plant Physiology, 2011, 155, 328-341.	2.3	158
30	Circadian control of carbohydrate availability for growth in <i>Arabidopsis</i> plants at night. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9458-9463.	3.3	576
31	A Putative Phosphatase, LSF1, Is Required for Normal Starch Turnover in Arabidopsis Leaves. Plant Physiology, 2010, 152, 685-697.	2.3	102
32	Sfp-Type 4′-Phosphopantetheinyl Transferase Is Indispensable for Fungal Pathogenicity. Plant Cell, 2009, 21, 3379-3396.	3.1	59
33	The control of flowering in time and space. Journal of Experimental Botany, 2006, 57, 3415-3418.	2.4	53
34	Towards Functional Proteomics of Membrane Protein Complexes in Synechocystis sp. PCC 6803. Plant Physiology, 2004, 134, 470-481.	2.3	166