Nick J Knowles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5600228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018). Archives of Virology, 2018, 163, 2601-2631.	0.9	567
2	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Archives of Virology, 2017, 162, 2505-2538.	0.9	506
3	Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus. Journal of General Virology, 2008, 89, 1265-1275.	1.3	275
4	Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Archives of Virology, 2016, 161, 2921-2949.	0.9	263
5	Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Archives of Virology, 2019, 164, 2417-2429.	0.9	257
6	Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-TÂ=Â3 virion architecture. Archives of Virology, 2008, 153, 715-27.	0.9	237
7	Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Archives of Virology, 2021, 166, 2633-2648.	0.9	219
8	Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Archives of Virology, 2020, 165, 2737-2748.	0.9	202
9	Transmission Pathways of Foot-and-Mouth Disease Virus in the United Kingdom in 2007. PLoS Pathogens, 2008, 4, e1000050.	2.1	178
10	Molecular analysis of duck hepatitis virus type 1 indicates that it should be assigned to a new genus. Virus Research, 2007, 123, 190-203.	1.1	166
11	Pandemic Strain of Foot-and-Mouth Disease Virus Serotype O. Emerging Infectious Diseases, 2005, 11, 1887-1893.	2.0	147
12	Beyond the Consensus: Dissecting Within-Host Viral Population Diversity of Foot-and-Mouth Disease Virus by Using Next-Generation Genome Sequencing. Journal of Virology, 2011, 85, 2266-2275.	1.5	127
13	Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2015). Archives of Virology, 2015, 160, 1837-1850.	0.9	126
14	Evidence for Positive Selection in Foot-and-Mouth Disease Virus Capsid Genes From Field Isolates. Genetics, 2001, 157, 7-15.	1.2	126
15	Primary diagnosis of foot-and-mouth disease by reverse transcription polymerase chain reaction. Journal of Virological Methods, 2000, 89, 167-176.	1.0	118
16	ICTV Virus Taxonomy Profile: Caliciviridae. Journal of General Virology, 2019, 100, 1469-1470.	1.3	117
17	Genetic Characterization of Foot-and-Mouth Disease Viruses, Ethiopia, 1981–2007. Emerging Infectious Diseases, 2009, 15, 1409-1417.	2.0	109
18	Characterization of sheep pox virus vaccine for cattle against lumpy skin disease virus. Antiviral Research, 2014, 109, 1-6.	1.9	106

#	Article	IF	CITATIONS
19	Emergence in Asia of Foot-and-Mouth Disease Viruses with Altered Host Range: Characterization of Alterations in the 3A Protein. Journal of Virology, 2001, 75, 1551-1556.	1.5	104
20	Multiple Origins of Foot-and-Mouth Disease Virus Serotype Asia 1 Outbreaks, 2003–2007. Emerging Infectious Diseases, 2009, 15, 1046-1051.	2.0	104
21	Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses (October 2018). Archives of Virology, 2019, 164, 943-946.	0.9	102
22	Complete sequence of a duck astrovirus associated with fatal hepatitis in ducklings. Journal of General Virology, 2009, 90, 1104-1108.	1.3	93
23	Sequencing of Porcine Enterovirus Groups II and III Reveals Unique Features of Both Virus Groups. Journal of Virology, 2002, 76, 5813-5821.	1.5	87
24	Feline fecal virome reveals novel and prevalent enteric viruses. Veterinary Microbiology, 2014, 171, 102-111.	0.8	83
25	Southeast Asian Foot-and-Mouth Disease Viruses in Eastern Asia. Emerging Infectious Diseases, 2012, 18, 499-501.	2.0	73
26	50 years of the International Committee on Taxonomy of Viruses: progress and prospects. Archives of Virology, 2017, 162, 1441-1446.	0.9	72
27	Natural interspecies recombinant bovine/porcine enterovirus in sheep. Journal of General Virology, 2012, 93, 1941-1951.	1.3	69
28	Waves of endemic foot-and-mouth disease in eastern Africa suggest feasibility of proactive vaccination approaches. Nature Ecology and Evolution, 2018, 2, 1449-1457.	3.4	66
29	Equine Rhinitis A Virus and Its Low pH Empty Particle: Clues Towards an Aphthovirus Entry Mechanism?. PLoS Pathogens, 2009, 5, e1000620.	2.1	64
30	A universal protocol to generate consensus level genome sequences for foot-and-mouth disease virus and other positive-sense polyadenylated RNA viruses using the Illumina MiSeq. BMC Genomics, 2014, 15, 828.	1.2	64
31	Phylogenetic Analysis of the Species <i>Theilovirus</i> : Emerging Murine and Human Pathogens. Journal of Virology, 2008, 82, 11545-11554.	1.5	63
32	Reconstruction of the Transmission History of RNA Virus Outbreaks Using Full Genome Sequences: Foot-and-Mouth Disease Virus in Bulgaria in 2011. PLoS ONE, 2012, 7, e49650.	1.1	57
33	Reconstructing the evolutionary history of pandemic foot-and-mouth disease viruses: the impact of recombination within the emerging O/ME-SA/Ind-2001 lineage. Scientific Reports, 2018, 8, 14693.	1.6	57
34	Evolution of foot-and-mouth disease virus intra-sample sequence diversity during serial transmission in bovine hosts. Veterinary Research, 2013, 44, 12.	1.1	56
35	Foot-and-Mouth Disease Virus Serotype A in Egypt. Emerging Infectious Diseases, 2007, 13, 1593-1596.	2.0	56
36	Binomial nomenclature for virus species: a consultation. Archives of Virology, 2020, 165, 519-525.	0.9	51

#	Article	IF	CITATIONS
37	Reconstructing Geographical Movements and Host Species Transitions of Foot-and-Mouth Disease Virus Serotype SAT 2. MBio, 2013, 4, e00591-13.	1.8	50
38	Phylogeography of foot-and-mouth disease virus types O and A in Malaysia and surrounding countries. Infection, Genetics and Evolution, 2011, 11, 320-328.	1.0	49
39	Highly diverse population of Picornaviridae and other members of the Picornavirales, in Cameroonian fruit bats. BMC Genomics, 2017, 18, 249.	1.2	42
40	Molecular and phylogenetic analyses of bovine rhinovirus type 2 shows it is closely related to foot-and-mouth disease virus. Virology, 2008, 373, 411-425.	1.1	41
41	Development of tailored real-time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth disease virus lineages circulating in the Middle East. Journal of Virological Methods, 2014, 207, 146-153.	1.0	41
42	Multiple introductions of serotype O foot-and-mouth disease viruses into East Asia in 2010–2011. Veterinary Research, 2013, 44, 76.	1.1	37
43	Two Closely Related Novel Picornaviruses in Cattle and Sheep in Hungary from 2008 to 2009, Proposed as Members of a New Genus in the Family Picornaviridae. Journal of Virology, 2012, 86, 13295-13302.	1.5	36
44	Development of a universal RT-PCR for amplifying and sequencing the leader and capsid-coding region of foot-and-mouth disease virus. Journal of Virological Methods, 2013, 189, 70-76.	1.0	35
45	The history of foot-and-mouth disease virus serotype C: the first known extinct serotype?. Virus Evolution, 2021, 7, .	2.2	35
46	Comparative sequence analysis of representative foot-and-mouth disease virus genomes from Southeast Asia. Virus Genes, 2011, 43, 41-45.	0.7	34
47	Novel antibody binding determinants on the capsid surface of serotype O foot-and-mouth disease virus. Journal of General Virology, 2014, 95, 1104-1116.	1.3	34
48	A traditional evolutionary history of foot-and-mouth disease viruses in Southeast Asia challenged by analyses of non-structural protein coding sequences. Scientific Reports, 2018, 8, 6472.	1.6	34
49	Genome Sequences of SAT 2 Foot-and-Mouth Disease Viruses from Egypt and Palestinian Autonomous Territories (Gaza Strip). Journal of Virology, 2012, 86, 8901-8902.	1.5	33
50	Characterization of a new picornavirus isolated from the freshwater fish Lepomis macrochirus. Journal of General Virology, 2014, 95, 601-613.	1.3	32
51	Development of a novel real-time RT-PCR assay to detect Seneca Valley virus-1 associated with emerging cases of vesicular disease in pigs. Journal of Virological Methods, 2017, 239, 34-37.	1.0	32
52	Genetic characterization and molecular epidemiology of foot-and-mouth disease viruses isolated from Afghanistan in 2003–2005. Virus Genes, 2008, 36, 401-413.	0.7	31
53	Observing micro-evolutionary processes of viral populations at multiple scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120203.	1.8	29
54	Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa. Journal of Virological Methods, 2016, 237, 114-120.	1.0	28

#	Article	IF	CITATIONS
55	Comparative genomics of serotype Asia 1 foot-and-mouth disease virus isolates from India sampled over the last two decades. Virus Research, 2008, 136, 16-29.	1.1	27
56	Positively Charged Residues at the Five-Fold Symmetry Axis of Cell Culture-Adapted Foot-and-Mouth Disease Virus Permit Novel Receptor Interactions. Journal of Virology, 2013, 87, 8735-8744.	1.5	26
57	Comparative Complete Genome Analysis of Chicken and Turkey Megriviruses (Family Picornaviridae): Long 3′ Untranslated Regions with a Potential Second Open Reading Frame and Evidence for Possible Recombination. Journal of Virology, 2014, 88, 6434-6443.	1.5	26
58	Foot-and-Mouth Disease in the Middle East Caused by an A/ASIA/G-VII Virus Lineage, 2015–2016. Emerging Infectious Diseases, 2018, 24, 1073-1078.	2.0	26
59	Crystal Structure of Swine Vesicular Disease Virus and Implications for Host Adaptation. Journal of Virology, 2003, 77, 5475-5486.	1.5	25
60	DETECTION AND GENETIC CHARACTERIZATION OF PORCINE CIRCOVIRUS 2 ISOLATES FROM THE FIRST CASES OF POSTWEANING MULTISYSTEMIC AND WASTING SYNDROME IN WILD BOARS IN GREECE. Journal of Wildlife Diseases, 2008, 44, 864-870.	0.3	24
61	Full Genome Sequencing Reveals New Southern African Territories Genotypes Bringing Us Closer to Understanding True Variability of Foot-and-Mouth Disease Virus in Africa. Viruses, 2018, 10, 192.	1.5	24
62	Molecular epidemiology of foot-and-mouth disease viruses from South East Asia 1998–2006: The Lao perspective. Veterinary Microbiology, 2009, 137, 178-183.	0.8	23
63	Recent spread of footâ€andâ€mouth disease in the Far East. Veterinary Record, 2010, 166, 569-570.	0.2	23
64	Characterizing sequence variation in the VP1 capsid proteins of foot and mouth disease virus (serotype 0) with respect to virion structure. Journal of Molecular Evolution, 1998, 46, 465-475.	0.8	22
65	Development of a reverse transcription polymerase chain reaction procedure for the detection of marine caliciviruses with potential application for nucleotide sequencing. Journal of Virological Methods, 1999, 82, 99-107.	1.0	22
66	Phylodynamic reconstruction of O CATHAY topotype foot-and-mouth disease virus epidemics in the Philippines. Veterinary Research, 2014, 45, 90.	1.1	22
67	Accumulation of nucleotide substitutions occurring during experimental transmission of foot-and-mouth disease virus. Journal of General Virology, 2013, 94, 108-119.	1.3	22
68	Reconstructing the origin and transmission dynamics of the 1967–68 foot-and-mouth disease epidemic in the United Kingdom. Infection, Genetics and Evolution, 2013, 20, 230-238.	1.0	20
69	Abortions in dromedaries (Camelus dromedarius) caused by equine rhinitis A virus. Journal of General Virology, 2008, 89, 660-666.	1.3	19
70	A tortoise-infecting picornavirus expands the host range of the family Picornaviridae. Archives of Virology, 2015, 160, 1319-1323.	0.9	18
71	Development and evaluation of a novel real-time RT-PCR to detect foot-and-mouth disease viruses from the emerging A/ASIA/G-VII lineage. Journal of Virological Methods, 2018, 252, 37-41.	1.0	18
72	Phylogenetic analysis of foot-and-mouth disease viruses isolated in Argentina. Virus Genes, 2001, 23, 175-181.	0.7	17

#	Article	IF	CITATIONS
73	Development of a real-time reverse transcription polymerase chain reaction assay for detection of marine caliciviruses (genus Vesivirus). Journal of Virological Methods, 2007, 140, 166-173.	1.0	16
74	The impact of within-herd genetic variation upon inferred transmission trees for foot-and-mouth disease virus. Infection, Genetics and Evolution, 2015, 32, 440-448.	1.0	14
75	Footâ€andâ€mouth disease outbreaks due to an exotic serotype Asia 1 virus in Myanmar in 2017. Transboundary and Emerging Diseases, 2019, 66, 1067-1072.	1.3	14
76	Evolutionary and Ecological Drivers Shape the Emergence and Extinction of Foot-and-Mouth Disease Virus Lineages. Molecular Biology and Evolution, 2021, 38, 4346-4361.	3.5	14
77	Characteristics of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion in experimentally infected cattle. Veterinary Microbiology, 2014, 169, 58-66.	0.8	13
78	Molecular characterization of footâ€endâ€mouth disease viruses circulating in Ethiopia between 2008 and 2019. Transboundary and Emerging Diseases, 2020, 67, 2983-2992.	1.3	13
79	Footâ€andâ€mouth disease outbreaks due to an exotic virus serotype A lineage (A/AFRICA/Gâ€IV) in Algeria in 2017. Transboundary and Emerging Diseases, 2019, 66, 7-13.	1.3	12
80	Viral meningitis epidemics and a single, recent, recombinant and anthroponotic origin of swine vesicular disease virus. Evolution, Medicine and Public Health, 2015, 2015, 289-303.	1.1	11
81	A proposed division of the family Picornaviridae into subfamilies based on phylogenetic relationships and functional genomic organization. Archives of Virology, 2021, 166, 2927-2935.	0.9	11
82	Patterns of Foot-and-Mouth Disease Virus Distribution in Africa. , 2014, , 21-38.		10
83	Footâ€andâ€mouth disease viruses of the O/MEâ€SA/Indâ€2001e sublineage in Pakistan. Transboundary and Emerging Diseases, 2021, 68, 3126-3135.	1.3	10
84	Methods for the detection of non-random base substitution in virus genes: models of synonymous nucleotide substitution in picornavirus genes. Virus Genes, 1998, 16, 253-266.	0.7	9
85	Genome Sequences of Foot-and-Mouth Disease Virus O/ME-SA/Ind-2001e Strains Isolated in Pakistan. Microbiology Resource Announcements, 2020, 9, .	0.3	9
86	Sequence analysis of the 5′ untranslated region of swine vesicular disease virus reveals block deletions between the end of the internal ribosomal entry site and the initiation codon. Journal of General Virology, 2005, 86, 2753-2761.	1.3	8
87	Complete sequence and organization of the human adenovirus serotype 46 genome. Virus Research, 2006, 116, 119-128.	1.1	8
88	Genomic characterization of novel marine vesiviruses from Steller sea lions (Eumetopias jubatus) from Alaska. Virus Research, 2008, 138, 26-35.	1.1	8
89	Rabovirus: a proposed new picornavirus genus that is phylogenetically basal to enteroviruses and sapeloviruses. Archives of Virology, 2015, 160, 2569-2575.	0.9	8
90	Footâ€andâ€mouth disease outbreaks in captive scimitarâ€horned oryx (<i>Oryx dammah</i>). Transboundary and Emerging Diseases, 2020, 67, 1716-1724.	1.3	8

#	Article	IF	CITATIONS
91	New technologies to diagnose and monitor infectious diseases of livestock: Challenges for sub-Saharan Africa. Onderstepoort Journal of Veterinary Research, 2012, 79, 456.	0.6	7
92	A vaccine-matching assessment of different genetic variants of serotype O foot-and-mouth disease virus isolated in Ethiopia between 2011 and 2014. Archives of Virology, 2020, 165, 1749-1757.	0.9	7
93	The first detection of a serotype O footâ€andâ€mouth disease virus in Namibia. Transboundary and Emerging Diseases, 2022, 69, .	1.3	7
94	Time Clustered Sampling Can Inflate the Inferred Substitution Rate in Foot-And-Mouth Disease Virus Analyses. PLoS ONE, 2015, 10, e0143605.	1.1	6
95	Bioinformatics and Molecular Analysis of the Evolutionary Relationship between Bovine Rhinitis A Viruses and Foot-And-Mouth Disease Virus. Bioinformatics and Biology Insights, 2015, 9s2, BBI.S37223.	1.0	5
96	Discovery of Lanama Virus, a Distinct Member of Species Kunsagivirus C (Picornavirales:) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 5 <u>9</u> 542 Td (I
97	Identification of diffusion routes of O/EAâ€3 topotype of footâ€∎ndâ€mouth disease virus in Africa and Western Asia between 1974 and 2019 – a phylogeographic analysis. Transboundary and Emerging Diseases, 2022, 69, .	1.3	5
98	Characterization of the FMDV-serotype-O isolates collected during 1962 and 1997 discloses new topotypes, CEY-1 and WCSA-1, and six new lineages. Scientific Reports, 2019, 9, 14526.	1.6	4
99	Foot-and-mouth disease in Southern Ghana: occurrence and molecular characterization of circulating viruses. Tropical Animal Health and Production, 2019, 51, 1667-1677.	0.5	4
100	First detection of footâ€andâ€mouth disease virus O/MEâ€SA/ Ind2001e sublineage in Jordan. Transboundary and Emerging Diseases, 2020, 67, 455-460.	1.3	4
101	Overview of Taxonomy. , 0, , 19-32.		4
102	Near-Complete Genome Sequencing of Swine Vesicular Disease Virus Using the Roche GS FLX Sequencing Platform. PLoS ONE, 2014, 9, e97180.	1.1	3
103	Mutagenesis Mapping of RNA Structures within the Foot-and-Mouth Disease Virus Genome Reveals Functional Elements Localized in the Polymerase (3D ^{pol})-Encoding Region. MSphere, 2021, 6, e0001521.	1.3	3
104	Overview of Taxonomy. , 0, , 19-32.		3
105	Characterization of Foot-and-Mouth Disease Viruses in Zambia-Implications for the Epidemiology of the Disease in Southern Africa. Viruses, 2021, 13, 2195.	1.5	2
106	Genotyping of footâ€andâ€mouth disease viruses collected in Sudan between 2009 and 2018. Transboundary and Emerging Diseases, 2022, 69, .	1.3	2
107	Genome Sequencing of Foot-and-Mouth Disease Virus Type O Isolate GRE/23/94. Genome Announcements, 2016, 4, .	0.8	0
108	How to recognise and deal with dubious virus sequences?. Infection, Genetics and Evolution, 2020, 81, 104242.	1.0	0