## Noah Mendelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5600055/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Coupling Spin Defects in a Layered Material to Nanoscale Plasmonic Cavities. Advanced Materials, 2022, 34, e2106046.                                         | 21.0 | 34        |
| 2  | Rational Control on Quantum Emitter Formation in Carbon-Doped Monolayer Hexagonal Boron<br>Nitride. ACS Applied Materials & Interfaces, 2022, 14, 3189-3198. | 8.0  | 9         |
| 3  | Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nature Communications, 2022, 13, 618.                   | 12.8 | 97        |
| 4  | Spin defects in hexagonal boron nitride for strain sensing on nanopillar arrays. Nanoscale, 2022, 14,<br>5239-5244.                                          | 5.6  | 17        |
| 5  | Grain Dependent Growth of Bright Quantum Emitters in Hexagonal Boron Nitride. Advanced Optical<br>Materials, 2021, 9, .                                      | 7.3  | 13        |
| 6  | Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride.<br>Nature Materials, 2021, 20, 321-328.                     | 27.5 | 210       |
| 7  | Scalable and Deterministic Fabrication of Quantum Emitter Arrays from Hexagonal Boron Nitride.<br>Nano Letters, 2021, 21, 3626-3632.                         | 9.1  | 42        |
| 8  | Tunable Fiberâ€Cavity Enhanced Photon Emission from Defect Centers in hBN. Advanced Optical<br>Materials, 2021, 9, 2002218.                                  | 7.3  | 27        |
| 9  | Direct Growth of Hexagonal Boron Nitride on Photonic Chips for High-Throughput Characterization.<br>ACS Photonics, 2021, 8, 2033-2040.                       | 6.6  | 13        |
| 10 | Low-Temperature Electron–Phonon Interaction of Quantum Emitters in Hexagonal Boron Nitride. ACS<br>Photonics, 2020, 7, 1410-1417.                            | 6.6  | 30        |
| 11 | Coupling Hexagonal Boron Nitride Quantum Emitters to Photonic Crystal Cavities. ACS Nano, 2020, 14,<br>7085-7091.                                            | 14.6 | 64        |
| 12 | Strainâ€Induced Modification of the Optical Characteristics of Quantum Emitters in Hexagonal Boron<br>Nitride. Advanced Materials, 2020, 32, e1908316.       | 21.0 | 72        |
| 13 | Purification of single-photon emission from hBN using post-processing treatments. Nanophotonics, 2019, 8, 2049-2055.                                         | 6.0  | 35        |
| 14 | Integrated on Chip Platform with Quantum Emitters in Layered Materials. Advanced Optical Materials,<br>2019, 7, 1901132.                                     | 7.3  | 49        |
| 15 | Engineering and Tuning of Quantum Emitters in Few-Layer Hexagonal Boron Nitride. ACS Nano, 2019, 13,<br>3132-3140.                                           | 14.6 | 101       |
| 16 | Selective Defect Formation in Hexagonal Boron Nitride. Advanced Optical Materials, 2019, 7, 1900397.                                                         | 7.3  | 39        |
| 17 | Very Large and Reversible Stark-Shift Tuning of Single Emitters in Layered Hexagonal Boron Nitride.<br>Physical Review Applied, 2019, 11, .                  | 3.8  | 48        |
| 18 | Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride.<br>Optica, 2019, 6, 1084.                                     | 9.3  | 52        |