Léo Morin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5599275/publications.pdf

Version: 2024-02-01

623574 642610 32 574 14 23 h-index citations g-index papers 32 32 32 306 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Identification of constitutive equations at very high strain rates using shock wave produced by laser. European Journal of Mechanics, A/Solids, 2022, 92, 104432.	2.1	12
2	Modeling and simulation of laser shock waves in elasto-plastic 1D layered specimens. International Journal of Solids and Structures, 2022, 239-240, 111422.	1.3	2
3	A Deconvolution Method for the Mapping of Residual Stresses by X-Ray Diffraction. Experimental Mechanics, 2022, 62, 1349-1362.	1.1	2
4	Analysis of shear ductile damage in forming processes using a micromechanical model with void shape effects. International Journal of Solids and Structures, 2022, 248, 111640.	1.3	4
5	A model of porous plastic single crystals based on fractal slip lines distribution. Journal of the Mechanics and Physics of Solids, 2022, 167, 104948.	2.3	1
6	Periodic smoothing splines for FFT-based solvers. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113549.	3.4	6
7	An interphase approach of size effects in ductile porous materials. International Journal of Fracture, 2021, 230, 71.	1.1	1
8	A reduced single-pattern model for the numerical simulation of multi-pattern metal forming. International Journal of Material Forming, 2021, 14, 1403-1416.	0.9	5
9	Reconstruction of heterogeneous surface residual-stresses in metallic materials from X-ray diffraction measurements. Mechanics of Materials, 2021, 158, 103882.	1.7	13
10	Experimental study and micromechanical modelling of the effective elastic properties of Fe–TiB2 composites. Composite Structures, 2021, 272, 114122.	3.1	10
11	Analysis of a model of field crack mechanics for brittle materials. Computer Methods in Applied Mechanics and Engineering, 2021, 386, 114061.	3.4	5
12	Generalized Euclidean Distances for Elasticity Tensors. Journal of Elasticity, 2020, 138, 221-232.	0.9	16
13	Numerical and experimental study of a 5754-aluminum alloy processed by heterogeneous repetitive corrugation and straightening. Journal of Materials Research and Technology, 2020, 9, 1941-1947.	2.6	18
14	A homogenization-based damage model for stiffness loss in ductile metal-matrix composites. Journal of the Mechanics and Physics of Solids, 2020, 137, 103812.	2.3	14
15	Laser Shock Peening: Toward the Use of Pliable Solid Polymers for Confinement. Metals, 2019, 9, 793.	1.0	23
16	Numerical simulation of model problems in plasticity based on field dislocation mechanics. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 085012.	0.8	10
17	Classical and sequential limit analysis revisited. Comptes Rendus - Mecanique, 2018, 346, 336-349.	2.1	22
18	Designing isotropic composites reinforced by aligned transversely isotropic particles of spheroidal shape. Comptes Rendus - Mecanique, 2018, 346, 1123-1135.	2.1	3

#	Article	IF	CITATION
19	Void coalescence in porous ductile solids containing two populations of cavities. European Journal of Mechanics, A/Solids, 2018, 72, 341-353.	2.1	6
20	A Gurson-type layer model for ductile porous solids with isotropic and kinematic hardening. International Journal of Solids and Structures, 2017, 118-119, 167-178.	1.3	29
21	Prediction of shear-dominated ductile fracture in a butterfly specimen using a model of plastic porous solids including void shape effects. European Journal of Mechanics, A/Solids, 2017, 61, 433-442.	2.1	17
22	Application of a model of plastic porous materials including void shape effects to the prediction of ductile failure under shear-dominated loadings. Journal of the Mechanics and Physics of Solids, 2016, 94, 148-166.	2.3	47
23	A unified criterion for the growth and coalescence of microvoids. Journal of the Mechanics and Physics of Solids, 2016, 97, 19-36.	2.3	30
24	A damage model for ductile porous materials with a spherically anisotropic matrix. International Journal of Damage Mechanics, 2016, 25, 315-335.	2.4	11
25	An analytical Lode angle dependent damage model for ductile porous materials. Engineering Fracture Mechanics, 2015, 149, 119-133.	2.0	16
26	A Gurson-type criterion for plastically anisotropic solids containing arbitrary ellipsoidal voids. International Journal of Solids and Structures, 2015, 77, 86-101.	1.3	39
27	Coalescence of voids by internal necking: Theoretical estimates and numerical results. Journal of the Mechanics and Physics of Solids, 2015, 75, 140-158.	2.3	52
28	Numerical assessment, implementation and application of an extended Gurson model accounting for void size effects. European Journal of Mechanics, A/Solids, 2015, 51, 183-192.	2.1	24
29	An approximate yield criterion for porous single crystals. European Journal of Mechanics, A/Solids, 2015, 51, 1-10.	2.1	54
30	Gurson's Criterion and Its Derivation Revisited. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	1.1	24
31	A new technique for finite element limit-analysis of Hill materials, with an application to the assessment of criteria for anisotropic plastic porous solids. International Journal of Engineering Science, 2014, 74, 65-79.	2.7	14
32	Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids – II: Evolution of the length and orientation of the void axes. European Journal of Mechanics, A/Solids, 2013, 42, 490-507.	2.1	44