Thomas Weidemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5599269/publications.pdf

Version: 2024-02-01

32 papers 1,245 citations

18 h-index 27 g-index

35 all docs 35 docs citations

35 times ranked 2043 citing authors

#	Article	IF	CITATIONS
1	Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. Journal of Experimental Medicine, 2013, 210, 433-443.	4.2	186
2	Counting Nucleosomes in Living Cells with a Combination of Fluorescence Correlation Spectroscopy and Confocal Imaging. Journal of Molecular Biology, 2003, 334, 229-240.	2.0	147
3	Analyzing Intracellular Binding and Diffusion with Continuous Fluorescence Photobleaching. Biophysical Journal, 2003, 84, 3353-3363.	0.2	125
4	Analysis of Ligand Binding by Two-Colour Fluorescence Cross-Correlation Spectroscopy. Single Molecules, 2002, 3, 49-61.	1.7	85
5	PyCorrFitâ€"generic data evaluation for fluorescence correlation spectroscopy. Bioinformatics, 2014, 30, 2532-2533.	1.8	74
6	A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo. PLoS Biology, 2019, 17, e3000057.	2.6	65
7	Single Bead Labeling Method for Combining Confocal Fluorescence On-Bead Screening and Solution Validation of Tagged One-Bead One-Compound Libraries. Chemistry and Biology, 2009, 16, 724-735.	6.2	59
8	Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes. ELife, 2016, 5 , .	2.8	53
9	Essential role of endocytosis for Interleukin-4 receptor mediated JAK/STAT signalling. Journal of Cell Science, 2015, 128, 3781-95.	1.2	51
10	Focus on composition and interaction potential of singleâ€pass transmembrane domains. Proteomics, 2010, 10, 4196-4208.	1.3	44
11	Dynamics and Interaction of Interleukin-4 Receptor Subunits in Living Cells. Biophysical Journal, 2014, 107, 2515-2527.	0.2	40
12	Single Cell Analysis of Ligand Binding and Complex Formation ofÂlnterleukin-4 Receptor Subunits. Biophysical Journal, 2011, 101, 2360-2369.	0.2	32
13	The chemical hunt for the identification of drugable targets. Current Opinion in Chemical Biology, 2004, 8, 424-431.	2.8	28
14	Covalent Fluorescence Labeling of Hisâ€Tagged Proteins on the Surface of Living Cells. ChemBioChem, 2008, 9, 1391-1395.	1.3	28
15	Fluorescence fluctuation microscopy: a diversified arsenal of methods to investigate molecular dynamics inside cells. Current Opinion in Structural Biology, 2014, 28, 69-76.	2.6	25
16	Photophysical Behavior of mNeonGreen, an Evolutionarily Distant Green Fluorescent Protein. Biophysical Journal, 2018, 114, 2419-2431.	0.2	25
17	Dual-Color Fluorescence Cross-Correlation Spectroscopy with Continuous Laser Excitation in a Confocal Setup. Methods in Enzymology, 2013, 518, 43-70.	0.4	24
18	Beyond Dimerization: A Membrane-dependent Activation Model for Interleukin-4 Receptor-mediated Signalling. Journal of Molecular Biology, 2007, 366, 1365-1373.	2.0	22

#	Article	IF	Citations
19	Membrane Targeting of the Spir·Formin Actin Nucleator Complex Requires a Sequential Handshake of Polar Interactions. Journal of Biological Chemistry, 2015, 290, 6428-6444.	1.6	22
20	Theoretical mimicry of biomembranes. FEBS Letters, 2009, 583, 1909-1915.	1.3	20
21	Phosphorylation of the Smo tail is controlled by membrane localization and is dispensable for clustering. Journal of Cell Science, 2013, 126, 4684-97.	1.2	14
22	Agonist mobility on supported lipid bilayers affects Fas mediated death response. FEBS Letters, 2015, 589, 3527-3533.	1.3	14
23	Diffusion of Single-Pass Transmembrane Receptors: From the Plasma Membrane into Giant Liposomes. Journal of Membrane Biology, 2017, 250, 393-406.	1.0	13
24	Analysis of Proteinâ^'Small Molecule Interactions by Microscale Equilibrium Dialysis and Its Application As a Secondary Confirmation Method for on-Bead Screening. ACS Combinatorial Science, 2010, 12, 647-654.	3.3	10
25	A Wide-Field Fluorescence Microscope Extension for Ultrafast Screening of One-Bead One-Compound Libraries Using a Spectral Image Subtraction Approach. ACS Combinatorial Science, 2016, 18, 209-219.	3.8	10
26	Application of Fluorescence Correlation Spectroscopy (FCS) to Measure the Dynamics of Fluorescent Proteins in Living Cells. Methods in Molecular Biology, 2014, 1076, 539-555.	0.4	7
27	Scanning Fluorescence Correlation Spectroscopy (SFCS) with a Scan Path Perpendicular to the Membrane Plane. Methods in Molecular Biology, 2014, 1076, 635-651.	0.4	7
28	Analysis of Ligand Binding by Two-Colour Fluorescence Cross-Correlation Spectroscopy., 2002, 3, 49.		5
29	Fluorescence Correlation Spectroscopy in Living Cells. , 2009, , 217-241.		4
30	Cells must Accumulate Interleukin-4 Receptor Subunits within CorticalÂSignaling Endosomes to Drive Complex Formation and Signal Transduction. Biophysical Journal, 2013, 104, 610a.	0.2	0
31	Signaling of IL-4R, a Typical Class I Cytokine Receptor. , 2010, , 323-328.		O
32	Phosphorylation of the Smo tail is controlled by membrane localisation and is dispensable for clustering. Development (Cambridge), 2013, 140, e2207-e2207.	1.2	0