
## Chunju He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5599121/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Polypropylene Hollow-Fiber Membrane Made Using the Dissolution-Induced Pores Method. Membranes, 2022, 12, 384.                                                                                                                | 3.0  | 3         |
| 2  | Heparin-mimicking semi-interpenetrating composite membrane with multiple excellent performances for promising hemodialysis. Journal of Membrane Science, 2021, 618, 118740.                                                   | 8.2  | 21        |
| 3  | Fabrication of a Dual-Action Membrane with Both Antibacterial and Anticoagulant Properties via<br>Cationic Polyelectrolyte-Induced Phase Separation. ACS Applied Materials & Interfaces, 2021, 13,<br>14938-14950.            | 8.0  | 12        |
| 4  | Recoverable underwater superhydrophobicity from a fully wetted state via dynamic air spreading.<br>IScience, 2021, 24, 103427.                                                                                                | 4.1  | 4         |
| 5  | A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. Journal of Membrane Science, 2020, 606, 118119.                                                                     | 8.2  | 61        |
| 6  | Photopolymerized biomimetic self-adhesive Polydimethylsiloxane-based amphiphilic cross-linked coating for anti-biofouling. Applied Surface Science, 2019, 463, 1097-1106.                                                     | 6.1  | 31        |
| 7  | Facile and fast fabrication of high structure-stable thin film nanocomposite membrane for potential application in solvent resistance nanofiltration. Applied Surface Science, 2019, 496, 143483.                             | 6.1  | 15        |
| 8  | Outstanding antifouling performance of poly(vinylidene fluoride) membranes: Novel amphiphilic<br>brushlike copolymer blends and oneâ€step surface zwitterionization. Journal of Applied Polymer<br>Science, 2019, 136, 47637. | 2.6  | 3         |
| 9  | Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer. Journal of Hazardous Materials, 2019, 367, 339-347.               | 12.4 | 135       |
| 10 | A stable and hydrophilic substrate for thin-film composite forward osmosis membrane revealed by in-situ cross-linked polymerization. Desalination, 2018, 433, 1-9.                                                            | 8.2  | 28        |
| 11 | Low-fouling PES membranes fabricated <i>via in situ</i> copolymerization mediated surface zwitterionicalization. New Journal of Chemistry, 2018, 42, 2248-2259.                                                               | 2.8  | 13        |
| 12 | Fabrication of a loose nanofiltration candidate from Polyacrylonitrile/Graphene oxide hybrid<br>membrane via thermally induced phase separation. Journal of Hazardous Materials, 2018, 360, 122-131.                          | 12.4 | 64        |
| 13 | Novel zwitterion-silver nanocomposite modified thin-film composite forward osmosis membrane with<br>simultaneous improved water flux and biofouling resistance property. Applied Surface Science, 2018,<br>455, 492-501.      | 6.1  | 56        |
| 14 | Novel Antiâ€Biofouling Soft Contact Lens: <scp>l</scp> ysteine Conjugated Amphiphilic Conetworks<br>via RAFT and Thiol–Ene Click Chemistry. Macromolecular Bioscience, 2017, 17, 1600444.                                     | 4.1  | 11        |
| 15 | High salt permeation nanofiltration membranes based on NMG-assisted polydopamine coating for dye/salt fractionation. Desalination, 2017, 413, 29-39.                                                                          | 8.2  | 50        |
| 16 | Capsaicin-Inspired Thiol–Ene Terpolymer Networks Designed for Antibiofouling Coatings. Langmuir,<br>2017, 33, 13689-13698.                                                                                                    | 3.5  | 26        |
| 17 | Innovative permeation and antifouling properties of PVDF ultrafiltration membrane with stepped hollow SiO 2 microspheres in membrane matrix. Materials Letters, 2016, 182, 376-379.                                           | 2.6  | 15        |
| 18 | Fabrication of cellulose membrane with "imprinted morphology―and low crystallinity from spherulitic [Bmim]Cl. Journal of Applied Polymer Science, 2016, 133, .                                                                | 2.6  | 4         |

Снимји Не

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Polyvinylpyrrolidone–polydimethylsiloxane amphiphilic coâ€networks: Synthesis, characterization, and<br>permâ€selective behavior. Journal of Applied Polymer Science, 2016, 133, .                        | 2.6 | 0         |
| 20 | Durable antifouling polyvinylidene fluoride membrane via surface zwitterionicalization mediated by an amphiphilic copolymer. RSC Advances, 2016, 6, 114024-114036.                                        | 3.6 | 9         |
| 21 | Enhanced antifouling ability of a poly(vinylidene fluoride) membrane functionalized with a zwitterionic serine-based layer. RSC Advances, 2016, 6, 85612-85620.                                           | 3.6 | 8         |
| 22 | Antifouling polyethersulfone membrane blended with a dual-mode amphiphilic copolymer. Journal of<br>Materials Science, 2016, 51, 7383-7394.                                                               | 3.7 | 10        |
| 23 | Enhanced antifouling performance of hybrid PVDF ultrafiltration membrane with the dual-mode SiO2-g-PDMS nanoparticles. Separation and Purification Technology, 2016, 166, 1-8.                            | 7.9 | 22        |
| 24 | Antifouling PVDF membrane grafted with zwitterionic poly(lysine methacrylamide) brushes. RSC<br>Advances, 2016, 6, 61434-61442.                                                                           | 3.6 | 22        |
| 25 | Dual-Mode Antifouling Ability of Thiol–Ene Amphiphilic Conetworks: Minimally Adhesive Coatings via the Surface Zwitterionization. ACS Sustainable Chemistry and Engineering, 2016, 4, 3803-3811.          | 6.7 | 39        |
| 26 | A clean synthesis approach to biocompatible amphiphilic conetworks via reversible<br>addition–fragmentation chain transfer polymerization and thiol–ene chemistry. RSC Advances, 2016, 6,<br>17228-17238. | 3.6 | 6         |
| 27 | Constructing a novel zwitterionic surface of PVDF membrane through the assembled chitosan and sodium alginate. International Journal of Biological Macromolecules, 2016, 87, 443-448.                     | 7.5 | 20        |
| 28 | Investigation of one-dimensional multi-functional zwitterionic Ag nanowires as a novel modifier for<br>PVDF ultrafiltration membranes. New Journal of Chemistry, 2016, 40, 441-446.                       | 2.8 | 16        |
| 29 | Amphiphilic Conetworks Based on End-Group Cross-Linking of Polydimethylsiloxane Pentablock<br>Copolymer and Polymethylhydrosiloxane. , 2015, , .                                                          |     | 1         |
| 30 | Biocompatible amphiphilic conetwork based on crosslinked star copolymers: A potential drug carrier.<br>Journal of Polymer Science Part A, 2015, 53, 2537-2545.                                            | 2.3 | 11        |
| 31 | Preparation of chitosan fibers using aqueous ionic liquid as the solvent. Fibers and Polymers, 2015, 16, 2704-2708.                                                                                       | 2.1 | 11        |
| 32 | Preparation and characterization of nano-chitin whisker reinforced PVDF membrane with excellent antifouling property. Journal of Membrane Science, 2015, 480, 1-10.                                       | 8.2 | 57        |
| 33 | Efficient Preparation of Super Antifouling PVDF Ultrafiltration Membrane with One Step Fabricated Zwitterionic Surface. ACS Applied Materials & Interfaces, 2015, 7, 17947-17953.                         | 8.0 | 116       |
| 34 | Preparation and characterization of superior antifouling PVDF membrane with extremely ordered and hydrophilic surface layer. Journal of Membrane Science, 2015, 494, 48-56.                               | 8.2 | 59        |
| 35 | Improved antifouling property of PVDF ultrafiltration membrane with plasma treated PVDF powder.<br>RSC Advances, 2015, 5, 64526-64533.                                                                    | 3.6 | 21        |
| 36 | Dual-mode antifouling ability of PVDF membrane with a surface-anchored amphiphilic polymer. RSC<br>Advances, 2015, 5, 68998-69005.                                                                        | 3.6 | 11        |

Снимји Не

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Zwitterionic SiO <sub>2</sub> nanoparticles as novel additives to improve the antifouling properties of PVDF membranes. RSC Advances, 2015, 5, 53653-53659.                                                                                             | 3.6  | 27        |
| 38 | Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning. Physical Chemistry Chemical Physics, 2015, 17, 21856-21865. | 2.8  | 14        |
| 39 | Tuning the antifouling property of PVDF ultrafiltration membrane with surface anchored polyelectrolyte complexes for sewage treatment. RSC Advances, 2015, 5, 63580-63587.                                                                              | 3.6  | 14        |
| 40 | Antifouling PVDF membrane with hydrophilic surface of terry pile-like structure. Journal of Membrane Science, 2015, 493, 243-251.                                                                                                                       | 8.2  | 66        |
| 41 | The plasticized spinning and cyclization behaviors of functionalized carbon nanotube/polyacrylonitrile fibers. RSC Advances, 2015, 5, 52226-52234.                                                                                                      | 3.6  | 13        |
| 42 | Enhanced separation and antifouling properties of PVDF ultrafiltration membranes with surface covalent self-assembly of polyethylene glycol. RSC Advances, 2015, 5, 81115-81122.                                                                        | 3.6  | 19        |
| 43 | Evolution of the morphological and structural properties of plasticized spinning polyacrylonitrile fibers during the stabilization process. RSC Advances, 2015, 5, 81399-81406.                                                                         | 3.6  | 11        |
| 44 | Structure and properties of chitin whisker reinforced chitosan membranes. International Journal of<br>Biological Macromolecules, 2014, 64, 341-346.                                                                                                     | 7.5  | 71        |
| 45 | Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane. Applied Surface Science, 2014, 321, 158-165.                                                                                                    | 6.1  | 35        |
| 46 | The plasticization mechanism of polyacrylonitrile/1-butyl-3-methylimidazolium chloride system.<br>Polymer, 2014, 55, 5773-5780.                                                                                                                         | 3.8  | 16        |
| 47 | Enhancing the antifouling property of poly(vinylidene fluoride)/SiO2 hybrid membrane through TIPS<br>method. Journal of Materials Science, 2014, 49, 7797-7808.                                                                                         | 3.7  | 35        |
| 48 | "Near Perfect―Amphiphilic Conetwork Based on End-Group Cross-Linking of Polydimethylsiloxane<br>Triblock Copolymer via Atom Transfer Radical Polymerization. ACS Applied Materials & Interfaces,<br>2014, 6, 15283-15290.                               | 8.0  | 29        |
| 49 | Bioinspired design and chitin whisker reinforced chitosan membrane. Materials Letters, 2014, 120,<br>82-85.                                                                                                                                             | 2.6  | 27        |
| 50 | High tenacity regenerated chitosan fibers prepared by using the binary ionic liquid solvent<br>(Cly·HCl)-[Bmim]Cl. Carbohydrate Polymers, 2013, 97, 300-305.                                                                                            | 10.2 | 32        |
| 51 | Preparation of Cellulose Hollow Fiber Membrane from Bamboo Pulp/1-Butyl-3-Methylimidazolium<br>Chloride/Dimethylsulfoxide System. Industrial & Engineering Chemistry Research, 2013, 52,<br>9417-9421.                                                  | 3.7  | 25        |
| 52 | A comparative study on the chitosan membranes prepared from glycine hydrochloride and acetic acid.<br>Carbohydrate Polymers, 2013, 91, 477-482.                                                                                                         | 10.2 | 32        |
| 53 | Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly. Progress in Natural Science: Materials International, 2012, 22, 341-346.                                                                 | 4.4  | 38        |
| 54 | New binary ionic liquid system for the preparation of chitosan/cellulose composite fibers.<br>Carbohydrate Polymers, 2012, 88, 347-351.                                                                                                                 | 10.2 | 45        |

Снимји Не

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of solvent sort, PES and PVP concentration on the properties and morphology of PVDF/PES blend hollow fiber membranes. Journal of Applied Polymer Science, 2010, 116, 1566-1573.           | 2.6 | 8         |
| 56 | Structure and properties of PANâ€based activated carbon hollow fibers: Effect of ammonium dibasic phosphate pretreatment. Journal of Applied Polymer Science, 2010, 116, 2023-2028.               | 2.6 | 2         |
| 57 | The preparation and properties of cellulose/chitin blend filaments. Journal of Applied Polymer Science, 2009, 113, 2777-2784.                                                                     | 2.6 | 11        |
| 58 | The spinning, structure, and properties of cellulose/chitin blend filaments through HWM method.<br>Polymers for Advanced Technologies, 2009, 21, n/a-n/a.                                         | 3.2 | 3         |
| 59 | Rheological properties of cellulose/chitin xanthate blend solutions and properties of the prepared fibers. Journal of Applied Polymer Science, 2008, 110, 1208-1215.                              | 2.6 | 1         |
| 60 | Effects of oxidation time on the structure and properties of polyacrylonitrile-based activated carbon hollow fiber. Journal of Applied Polymer Science, 2007, 106, 470-474.                       | 2.6 | 16        |
| 61 | Influence of Plasma Treatment on the Electroless Deposition of Copper on Carbon Fibers. Journal of<br>Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1853-1865.                   | 2.2 | 9         |
| 62 | Effects of ammonium dibasic phosphate pretreatment time on the structure and properties of<br>PAN-based activated carbon hollow fibers. Journal of Applied Polymer Science, 2006, 102, 2448-2453. | 2.6 | 0         |
| 63 | Properties of cellulose/PAN blend membrane. Journal of Applied Polymer Science, 2002, 83, 3105-3111.                                                                                              | 2.6 | 6         |
| 64 | Studies on the properties of cotton linters' membrane. Polymers for Advanced Technologies, 1999, 10,<br>438-441.                                                                                  | 3.2 | 2         |
| 65 | Rheological properties of cellulose solution in paraformaldehyde/dimethyl sulfoxide system (1).<br>Polymers for Advanced Technologies, 1999, 10, 487-492.                                         | 3.2 | 11        |