
Tatiana Krasnenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5599010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Crystal and Thermal Properties of Solid Solution Zn2â^'2xCu2xSiO4 with Willemite Structure. Russian Journal of Inorganic Chemistry, 2019, 64, 1-6.	1.3	2
2	Voltammetric Determination of the Nature of the Concentration Quenching of Luminescence Zn2–Â2уMg2уSiO4:Mn. Russian Journal of Physical Chemistry A, 2019, 93, 976-979.	0.6	1
3	Origin of the Concentration Quenching of Luminescence in Zn2SiO4:Mn Phosphors. Physics of the Solid State, 2019, 61, 806-810.	0.6	7
4	On the Mechanism of Thermal Expansion of Orthorhombically Modified Copper Pyrovanadate. Journal of Surface Investigation, 2018, 12, 1170-1175.	0.5	1
5	Crystallochemical and Voltammetric Characterization of the Zn2–Â2ÑMn2ÑSiO4 Luminophor. Russian Journal of Physical Chemistry A, 2018, 92, 1413-1416.	0.6	7
6	Hydrothermal synthesis and microstructure of α-Zn2SiO4:V crystal phosphor. Russian Journal of Inorganic Chemistry, 2017, 62, 168-171.	1.3	6
7	The effect of the synthesis method on the morphological and luminescence characteristics of α-Zn2V2O7. Russian Journal of Inorganic Chemistry, 2017, 62, 269-274.	1.3	6
8	Spectroscopic and voltammetric characteristics of α-Zn2SiO4:V luminophor. Russian Journal of Physical Chemistry A, 2017, 91, 1824-1827.	0.6	8
9	Stabilizing the associated non-autonomous phase upon thermal expansion of Zn2V2O7. Russian Journal of Inorganic Chemistry, 2017, 62, 413-417.	1.3	4
10	Mechanism of thermal expansion of structural modifications of zinc pyrovanadate. Crystallography Reports, 2017, 62, 703-709.	0.6	10
11	Physicochemical characteristics of mine waters in the Urals. Geochemistry International, 2016, 54, 470-474.	0.7	0
12	Synthesis, sintering, and conductivity of Mn2V2O7. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 668-671.	0.6	1
13	Phase equilibria in the Nb2O5–CdO system and the thermal stability of Cd2Nb2O7 and CdNb2O6. Russian Journal of Inorganic Chemistry, 2016, 61, 156-160.	1.3	1
14	Coulombâ€correlation effects on the optical properties of βâ€Mn ₂ V ₂ O ₇ . Physica Status Solidi (B): Basic Research, 2015, 252, 2853-2857.	1.5	9
15	Stabilizing the triclinic structure of Mn2V2O7 via isovalent cationic substitution. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 246-248.	0.6	1
16	Structural modification of Mn2V2O7: Thermal expansion and solid solutions. Russian Journal of General Chemistry, 2013, 83, 1640-1644.	0.8	8
17	51V NMR in Mn2â^'2x Ni2x V2O7 solid solutions. Journal of Structural Chemistry, 2013, 54, 126-129.	1.0	1
18	Synthesis and structural characteristics of La2 â^' x Sr x NiO4 dielectric ceramics. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76, 754-756.	0.6	1

TATIANA KRASNENKO

#	Article	IF	CITATIONS
19	Studying the local structural features of Zn2 â^' 2x Cd2x V2O7 by NMR and IR spectroscopy. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76, 371-373.	0.6	2
20	Optimization of the complex recycling of ash and slag from thermal power plants. Theoretical Foundations of Chemical Engineering, 2011, 45, 791-793.	0.7	1
21	Effect of thermal transformations of constituent polyhedra of the crystal structure on the properties of Cd2V2O7. Russian Journal of Inorganic Chemistry, 2010, 55, 430-433.	1.3	6
22	Diagrams of phase equilibria: a basis for implementing technologies of technogenic waste product conversion. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 1163-1166.	0.6	0
23	Atomic and Electronic Structure of Zinc and Copper Pyrovanadates with Negative Thermal Expansion. Advances in Science and Technology, 2010, 63, 358-363.	0.2	4
24	Thermally activated transformations in stable and metastable copper(II) pyrovanadate polymorphs. Russian Journal of Inorganic Chemistry, 2009, 54, 22-26.	1.3	7
25	Phase equilibria in the V2O5-NaVO3-Ca(VO3)2-Mn2V2O7 system and interactions of phases with H2SO4 and NaOH solutions. Russian Journal of Inorganic Chemistry, 2008, 53, 1489-1494.	1.3	3
26	Phase relations in the Zn2V2O7-Cu2V2O7 system from room temperature to melting. Russian Journal of Inorganic Chemistry, 2008, 53, 1641-1647.	1.3	8
27	Desulfurization of recycled vanadium-bearing raw materials. Metallurgist, 2006, 50, 565-570.	0.6	Ο
28	A new high-temperature modification of copper pyrovanadate. Doklady Chemistry, 2005, 400, 30-33.	0.9	5
29	Phase Relations in the NaVO3–Ca(VO3)2System. Inorganic Materials, 2004, 40, 407-410.	0.8	2
30	Controlling Pyrometallurgical Processes Used to Extract Vanadium from Commercial Raw Materials on the Basis of Chemical Modeling of Vanadium-Bearing Oxide Systems. Metallurgist, 2004, 48, 85-91.	0.6	2
31	Explosive Phase Transition of Zn2V2O7 on Cooling. Inorganic Materials, 2003, 39, 863-865.	0.8	0
32	Crystal structure of β′-Zn2V2O7. Crystallography Reports, 2003, 48, 35-38.	0.6	12
33	Title is missing!. Metallurgist, 2001, 45, 306-311.	0.6	1
34	Thermal strain in zinc pyrovanadate. Inorganic Materials, 2000, 36, 1032-1035.	0.8	11