
Roberto Quinlan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5598192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4397-4402.	7.1	828
2	Effects of agriculture, urbanization, and climate on water quality in the northernGreat Plains. Limnology and Oceanography, 1999, 44, 739-756.	3.1	274
3	Title is missing!. Journal of Paleolimnology, 2001, 26, 327-342.	1.6	264
4	Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshwater Biology, 2001, 46, 1529-1551.	2.4	143
5	Title is missing!. Journal of Paleolimnology, 2000, 23, 319-336.	1.6	97
6	Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnology and Oceanography, 2021, 66, 392-404.	3.1	64
7	Food web changes in arctic ecosystems related to climate warming. Global Change Biology, 2005, 11, 1381-1386.	9.5	63
8	The distribution of the Chironomidae (Insecta: Diptera) along multiple environmental gradients in lakes and ponds of the eastern Canadian Arctic. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 1511-1527.	1.4	51
9	A landscape approach to examining spatial patterns of limnological variables and long-term environmental change in a southern Canadian lake district. Freshwater Biology, 2003, 48, 1676-1697.	2.4	49
10	Title is missing!. Journal of Paleolimnology, 2002, 27, 249-260.	1.6	46
11	Cultural eutrophication, anoxia, and ecosystem recovery in Meretta Lake, High Arctic Canada. Limnology and Oceanography, 2011, 56, 639-650.	3.1	46
12	Characterization of perfluoroalkyl substances in sediment cores from High and Low Arctic lakes in Canada. Science of the Total Environment, 2019, 666, 414-422.	8.0	45
13	The state of Lake Simcoe (Ontario, Canada): the effects of multiple stressors on phosphorus and oxygen dynamics. Inland Waters, 2013, 3, 51-74.	2.2	44
14	Temperature change as a driver of spatial patterns and longâ€ŧerm trends in chironomid (Insecta:) Tj ETQq0 0 0 i	gBT/Over	loဌk 10 Tf 50
15	Landscape effects of climate, agriculture, and urbanization on benthic invertebrate communities of Canadian prairie lakes. Limnology and Oceanography, 2002, 47, 378-391.	3.1	38
16	A database of chlorophyll and water chemistry in freshwater lakes. Scientific Data, 2020, 7, 310.	5.3	37

17	Use of subfossil Chaoborus mandibles in models for inferring past hypolimnetic oxygen. Journal of Paleolimnology, 2010, 44, 43-50.	1.6	36
18	Effects of sequential depositional basins on lake response to urban and agricultural pollution: a palaeoecological analysis of the Qu'Appelle Valley, Saskatchewan, Canada. Freshwater Biology, 2000, 43, 319-337.	2.4	32

2

ROBERTO QUINLAN

#	Article	IF	CITATIONS
19	Long-term water quality changes in a multiple-stressor system: a diatom-based paleolimnological study of Lake Simcoe (Ontario, Canada). Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 24-40.	1.4	31
20	Total phosphorus and climate are equally important predictors of water quality in lakes. Aquatic Sciences, 2021, 83, 1.	1.5	27
21	A high resolution multi-proxy record of pronounced recent environmental change at Baker Lake, Nunavut. Journal of Paleolimnology, 2012, 47, 661-676.	1.6	24
22	Biological and nutrient responses to catchment disturbance and warming in small lakes near the Alaskan tundra–taiga boundary. Holocene, 2014, 24, 1308-1319.	1.7	22
23	Patterns in the limnology of lakes and ponds across multiple local and regional environmental gradients in the eastern Canadian Arctic. Inland Waters, 2012, 2, 59-76.	2.2	18
24	Comparing different methods of calculating volume-weighted hypolimnetic oxygen (VWHO) in lakes. Aquatic Sciences, 2005, 67, 97-103.	1.5	16
25	The extant <i>Chaoborus</i> assemblage can be assessed using subfossil mandibles. Freshwater Biology, 2010, 55, 2458-2467.	2.4	14
26	Climate-mediated changes in small lakes inferred from midge assemblages: the influence of thermal regime and lake depth. Journal of Paleolimnology, 2012, 48, 297-310.	1.6	13
27	Arctic chironomids of the northwest North Atlantic reflect environmental and biogeographic gradients. Journal of Biogeography, 2021, 48, 511-525.	3.0	11
28	Midge (<scp>C</scp> hironomidae, <scp>C</scp> haoboridae, <scp>C</scp> eratopogonidae) assemblages and their relationship with biological and physicochemical variables in shallow, polymictic lakes. Freshwater Biology, 2013, 58, 2464-2480.	2.4	10
29	Quantitative paleolimnological inference models applied to a high-resolution biostratigraphic study of lake degradation and recovery, Onondaga Lake, New York (USA). Journal of Paleolimnology, 2016, 55, 241-258.	1.6	4
30	Assessing hypolimnetic oxygen concentrations in Canadian Shield lakes: Deriving management benchmarks using two methods. Lake and Reservoir Management, 2009, 25, 313-322.	1.3	2
31	Are different benthic communities in Arctic delta lakes distinguishable along a hydrological connectivity gradient using a rapid bioassessment approach?. Arctic Science, 2020, 6, 463-487.	2.3	2
32	The limnological response of Arctic deltaic lakes to alterations in flood regime. Inland Waters, 0, , 1-45.	2.2	1
33	Effects of recent climate and environmental changes on the ecology of a boreal forest lake in Manitoba, Canada. Journal of Paleolimnology, 2021, 66, 15-27.	1.6	О