Longshi Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5598158/publications.pdf

Version: 2024-02-01

567247 752679 22 632 15 20 h-index citations g-index papers 22 22 22 830 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Polar-Solvent-Free Synthesis of Highly Photoluminescent and Stable CsPbBr ₃ Nanocrystals with Controlled Shape and Size by Ultrasonication. Chemistry of Materials, 2019, 31, 365-375.	6.7	67
2	Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection. Materials Science and Engineering C, 2017, 81, 213-223.	7.3	63
3	Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly(lactic acid)-assisted anion-exchange reactions. Journal of Materials Chemistry C, 2018, 6, 5375-5383.	5.5	62
4	Rapid synthesis of highly photoluminescent nitrogen-doped carbon quantum dots via a microreactor with foamy copper for the detection of Hg2+ ions. Sensors and Actuators B: Chemical, 2018, 258, 637-647.	7.8	53
5	Highly Photoluminescent and Stable N-Doped Carbon Dots as Nanoprobes for Hg2+ Detection. Nanomaterials, 2018, 8, 900.	4.1	50
6	Synergistic Surface Passivation of CH ₃ NH ₃ PbBr ₃ Perovskite Quantum Dots with Phosphonic Acid and (3â€Aminopropyl)triethoxysilane. Chemistry - A European Journal, 2019, 25, 5014-5021.	3.3	43
7	Highly Efficient and Waterâ€Stable Lead Halide Perovskite Quantum Dots Using Superhydrophobic Aerogel Inorganic Matrix for White Lightâ€Emitting Diodes. Advanced Materials Technologies, 2020, 5, 1900941.	5.8	42
8	Ultrasonication-assisted synthesis of CsPbBr ₃ and Cs ₄ PbBr ₆ perovskite nanocrystals and their reversible transformation. Beilstein Journal of Nanotechnology, 2019, 10, 666-676.	2.8	35
9	Highly reflective nanofiber films based on electrospinning and their application on color uniformity and luminous efficacy improvement of white light-emitting diodes. Optics Express, 2017, 25, 20598.	3.4	33
10	Investigating the transformation of CsPbBr ₃ nanocrystals into highly stable CsPbBr ₆ nanocrystals using ethyl acetate in a microchannel reactor. Nanotechnology, 2019, 30, 295603.	2.6	32
11	Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes. Optics Letters, 2017, 42, 4962.	3.3	23
12	Solvent regulation synthesis of single-component white emission carbon quantum dots for white light-emitting diodes. Nanotechnology Reviews, 2021, 10, 465-477.	5.8	23
13	Effect of ZnO nanostructures on the optical properties of white light-emitting diodes. Optics Express, 2017, 25, A432.	3.4	22
14	Investigation of stability and optical performance of quantum-dot-based LEDs with methyl-terminated-PDMS-based liquid-type packaging structure. Optics Letters, 2019, 44, 90.	3.3	16
15	Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor. Materials, 2018, 11, 371.	2.9	15
16	Improvement in Luminous Efficacy and Thermal Performance Using Quantum Dots Spherical Shell for White Light Emitting Diodes. Nanomaterials, 2018, 8, 618.	4.1	14
17	Bioinspired high-scattering polymer films fabricated by polymerization-induced phase separation. Optics Letters, 2020, 45, 2918.	3.3	13
18	Synthesis of Highly Photoluminescent All-Inorganic CsPbX3 Nanocrystals via Interfacial Anion Exchange Reactions. Nanomaterials, 2019, 9, 1296.	4.1	12

#	Article	IF	CITATIONS
19	CsPbBr3/Cs4PbBr6 heterostructure solids with high stability and photoluminescence for white light-emitting diodes. Journal of Alloys and Compounds, 2022, 919, 165857.	5.5	10
20	Numerical study on the scattering property of porous polymer structures via supercritical CO ₂ microcellular foaming. Applied Optics, 2020, 59, 4533.	1.8	4
21	A Synthetic Method for Extremely Stable Thin Film of CsPbBr <inf>3</inf> QDs and its Application on Light-emitting Diodes., 2018,,.		O
22	Room-Temperature Synthesis of Cesium Lead Halide Perovskite Nanorods. , 2018, , .		0