List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5597718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grazing and Recovery of Kelp Gametophytes Under Ocean Warming. Frontiers in Marine Science, 2022, 9, .	1.2	5
2	Greenwater, but not live feed enrichment, promotes development, survival, and growth of larval Portunus armatus. Aquaculture, 2021, 534, 736331.	1.7	6
3	Alkalinity of diverse water samples can be altered by mercury preservation and borosilicate vial storage. Scientific Reports, 2021, 11, 9961.	1.6	14
4	Knowledge Gaps in the Biology, Ecology, and Management of the Pacific Crown-of-Thorns Sea Star <i>Acanthaster</i> sp. on Australia's Great Barrier Reef. Biological Bulletin, 2021, 241, 330-346.	0.7	25
5	Echidnas of the Sea: The Defensive Behavior of Juvenile and Adult Crown-of-Thorns Sea Stars. Biological Bulletin, 2021, 241, 259-270.	0.7	6
6	Diet flexibility and growth of the early herbivorous juvenile crown-of-thorns sea star, implications for its boom-bust population dynamics. PLoS ONE, 2020, 15, e0236142.	1.1	19
7	Combined mechanistic modelling predicts changes in species distribution and increased coâ€occurrence of a tropical urchin herbivore and a habitatâ€forming temperate kelp. Diversity and Distributions, 2020, 26, 1211-1226.	1.9	20
8	A microalga is better than a commercial lipid emulsion at enhancing live feeds for an ornamental marine fish larva. Aquaculture, 2020, 523, 735203.	1.7	15
9	Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification. Aquaculture, 2020, 528, 735618.	1.7	10
10	Crown-of-thorns starfish larvae are vulnerable to predation even in the presence of alternative prey. Coral Reefs, 2020, 39, 293-303.	0.9	13
11	The hidden army: corallivorous crown-of-thorns seastars can spend years as herbivorous juveniles. Biology Letters, 2020, 16, 20190849.	1.0	39
12	Training fish for restocking: refuge and predator training in the hatchery has limited benefits for a marine fish. Journal of Fish Biology, 2020, 97, 172-182.	0.7	4
13	Strain Selection for Growth Enhancement of Wild and Cultivated Eucheumatoid Seaweed Species in Indonesia. Sains Malaysiana, 2020, 49, 2453-2464.	0.3	1
14	Building global change resilience: Concrete has the potential to ameliorate the negative effects of climate-driven ocean change on a newly-settled calcifying invertebrate. Science of the Total Environment, 2019, 646, 1349-1358.	3.9	24
15	Impact of growing up in a warmer, lower pH future on offspring performance: transgenerational plasticity in a pan-tropical sea urchin. Coral Reefs, 2019, 38, 1085-1095.	0.9	30
16	Implications of range overlap in the commercially important pan-tropical sea urchin genus Tripneustes (Echinoidea: Toxopneustidae). Marine Biology, 2019, 166, 1.	0.7	8
17	Ready to harvest? Spine colour predicts gonad index and gonad colour rating of a commercially important sea urchin. Aquaculture, 2019, 505, 510-516.	1.7	8
18	Oyster larvae as a potential first feed for small-mouthed ornamental larval fish. Aquaculture Environment Interactions, 2019, 11, 657-669.	0.7	5

#	Article	IF	CITATIONS
19	Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172684.	1.2	33
20	Enhanced performance of juvenile crown of thorns starfish in a warm-high CO2 ocean exacerbates poor growth and survival of their coral prey. Coral Reefs, 2018, 37, 751-762.	0.9	20
21	Aquaculture-derived trophic subsidy boosts populations of an ecosystem engineer. Aquaculture Environment Interactions, 2018, 10, 279-289.	0.7	14
22	Barrens of gold: gonad conditioning of an overabundant sea urchin. Aquaculture Environment Interactions, 2018, 10, 345-361.	0.7	18
23	Ocean warming has greater and more consistent negative effects than ocean acidification on the growth and health of subtropical macroalgae. Marine Ecology - Progress Series, 2018, 595, 55-69.	0.9	35
24	Superstars: Assessing nutrient thresholds for enhanced larval success of Acanthaster planci , a review of the evidence. Marine Pollution Bulletin, 2017, 116, 307-314.	2.3	41
25	Consumption of aquaculture waste affects the fatty acid metabolism of a benthic invertebrate. Science of the Total Environment, 2017, 586, 1170-1181.	3.9	31
26	Interspecific variation in potential importance of planktivorous damselfishes as predators of Acanthaster sp. eggs. Coral Reefs, 2017, 36, 653-661.	0.9	10
27	Indirect effects of ocean acidification drive feeding and growth of juvenile crown-of-thorns starfish, <i>Acanthaster planci</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170778.	1.2	27
28	Moderate ocean warming mitigates, but more extreme warming exacerbates the impacts of zinc from engineered nanoparticles onÂaÂmarine larva. Environmental Pollution, 2017, 228, 190-200.	3.7	19
29	A Waterborne Pursuit-Deterrent Signal Deployed by a Sea Urchin. American Naturalist, 2017, 189, 700-708.	1.0	6
30	Global patterns in the effects of predator declines on sea urchins. Ecography, 2017, 40, 1029-1039.	2.1	23
31	Climateâ€driven disparities among ecological interactions threaten kelp forest persistence. Global Change Biology, 2017, 23, 353-361.	4.2	69
32	Larval Survivorship and Settlement of Crown-of-Thorns Starfish (Acanthaster cf. solaris) at Varying Algal Cell Densities. Diversity, 2017, 9, 2.	0.7	35
33	Benthic Predators Influence Microhabitat Preferences and Settlement Success of Crown-of-Thorns Starfish (Acanthaster cf. solaris). Diversity, 2016, 8, 27.	0.7	23
34	Effects of ocean warming and lowered pH on algal growth and palatability to a grazing gastropod. Marine Biology, 2016, 163, 1.	0.7	32
35	Future aquafeeds may compromise reproductive fitness in a marine invertebrate. Marine Environmental Research, 2016, 122, 67-75.	1.1	20
36	Near-future ocean acidification enhances the feeding rate and development of the herbivorous juveniles of the crown-of-thorns starfish, Acanthaster planci. Coral Reefs, 2016, 35, 1241-1251.	0.9	24

#	Article	IF	CITATIONS
37	Predation on crown-of-thorns starfish larvae by damselfishes. Coral Reefs, 2016, 35, 1253-1262.	0.9	36
38	Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification. Marine Environmental Research, 2016, 113, 39-48.	1.1	30
39	Adaptive capacity of the sea urchin Heliocidaris erythrogramma to ocean change stressors: responses from gamete performance to the juvenile. Marine Ecology - Progress Series, 2016, 556, 161-172.	0.9	17
40	Early metamorphosis is costly and avoided by young, but physiologically competent, marine larvae. Marine Ecology - Progress Series, 2016, 559, 117-129.	0.9	17
41	Biochar from commercially cultivated seaweed for soil amelioration. Scientific Reports, 2015, 5, 9665.	1.6	125
42	Biogenic acidification drives density-dependent growth of a calcifying invertebrate in culture. Marine Biology, 2015, 162, 1541-1558.	0.7	19
43	Gracilaria waste biomass (sampah rumput laut) as a bioresource for selenium biosorption. Journal of Applied Phycology, 2015, 27, 611-620.	1.5	26
44	Larval Starvation to Satiation: Influence of Nutrient Regime on the Success of Acanthaster planci. PLoS ONE, 2015, 10, e0122010.	1.1	57
45	Larval phenotypic plasticity in the boom-and-bust crown-of-thorns seastar, Acanthaster planci. Marine Ecology - Progress Series, 2015, 539, 179-189.	0.9	40
46	Larvae of the coral eating crownâ€ofâ€thorns starfish, <i>Acanthaster planci</i> in a warmerâ€high <scp>CO</scp> ₂ ocean. Global Change Biology, 2014, 20, 3365-3376.	4.2	43
47	Increased temperature, but not acidification, enhances fertilization and development in a tropical urchin: potential for adaptation to a tropicalized eastern Australia. Evolutionary Applications, 2014, 7, 1226-1237.	1.5	22
48	Impacts of near future sea surface pH and temperature conditions on fertilisation and embryonic development in Centrostephanus rodgersii from northern New Zealand and northern New South Wales, Australia. Marine Biology, 2014, 161, 101-110.	0.7	23
49	Thermal tolerance of early development in tropical and temperate sea urchins: inferences for the tropicalization of eastern Australia. Marine Biology, 2014, 161, 395-409.	0.7	31
50	Warming Influences Mg ²⁺ Content, While Warming and Acidification Influence Calcification and Test Strength of a Sea Urchin. Environmental Science & Technology, 2014, 48, 12620-12627.	4.6	46
51	Ingestion of Microplastic Has Limited Impact on a Marine Larva. Environmental Science & Technology, 2014, 48, 1638-1645.	4.6	315
52	Seasonal variation in the effects of ocean warming and acidification on a native bryozoan, Celleporaria nodulosa. Marine Biology, 2013, 160, 1903-1911.	0.7	20
53	Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (<i>Heliocidaris erythrogramma</i>). Global Change Biology, 2013, 19, 2698-2707.	4.2	74
54	Ocean warming will mitigate the effects of acidification on calcifying sea urchin larvae (Heliocidaris) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf !

and Ecology, 2013, 448, 250-257.

#	Article	IF	CITATIONS
55	Direct and indirect effects of ocean acidification and warming on a marine plant–herbivore interaction. Oecologia, 2013, 173, 1113-1124.	0.9	118
56	Feeding preference and performance in the tropical sea urchin Tripneustes gratilla. Aquaculture, 2013, 400-401, 6-13.	1.7	18
57	The stunting effect of a high CO ₂ ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120439.	1.8	132
58	Impacts of Ocean Acidification on Early Life-History Stages and Settlement of the Coral-Eating Sea Star Acanthaster planci. PLoS ONE, 2013, 8, e82938.	1.1	73
59	Complex Responses of Intertidal Molluscan Embryos to a Warming and Acidifying Ocean in the Presence of UV Radiation. PLoS ONE, 2013, 8, e55939.	1.1	28
60	Impacts of ocean acidification on development of the meroplanktonic larval stage of the sea urchin Centrostephanus rodgersii. ICES Journal of Marine Science, 2012, 69, 460-464.	1.2	30
61	Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: A phytochemical and pharmacological review. Journal of Ethnopharmacology, 2012, 142, 591-619.	2.0	293
62	Adaptive Capacity of the Habitat Modifying Sea Urchin Centrostephanus rodgersii to Ocean Warming and Ocean Acidification: Performance of Early Embryos. PLoS ONE, 2012, 7, e42497.	1.1	114
63	Dissolved histamine: a potential habitat marker promoting settlement and metamorphosis in sea urchin larvae. Marine Biology, 2012, 159, 915-925.	0.7	42
64	Does a top predator reduce the predatory impact of an invasive mesopredator on an endangered rodent?. Ecography, 2011, 34, 827-835.	2.1	55
65	Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2376-2383.	1.2	144
66	Do Cues Matter? Highly Inductive Settlement Cues Don't Ensure High Post-Settlement Survival in Sea Urchin Aquaculture. PLoS ONE, 2011, 6, e28054.	1.1	57
67	Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Marine Biology, 2010, 157, 2061-2069.	0.7	108
68	Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Marine Environmental Research, 2010, 69, 234-239.	1.1	115
69	Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla. PLoS ONE, 2010, 5, e11372.	1.1	206
70	Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1883-1888.	1.2	229
71	Maternal provisioning for larvae and larval provisioning for juveniles in the toxopneustid sea urchin Tripneustes gratilla. Marine Biology, 2008, 155, 473-482.	0.7	65
72	Induction of settlement in the sea urchin Tripneustes gratilla by macroalgae, biofilms and conspecifics: A role for bacteria?. Aquaculture, 2008, 274, 268-274.	1.7	75

#	Article	IF	CITATIONS
73	The effect of the addition of algae feeding stimulants to artificial diets for the sea urchin Tripneustes gratilla. Aquaculture, 2007, 273, 624-633.	1.7	73
74	Cost of chemical defence in the red algaDelisea pulchra. Oikos, 2006, 113, 13-22.	1.2	54
75	Growth and feeding in juvenile triploid and diploid blacklip abalone, Haliotis rubra (Leach, 1814), at two temperatures. Aquaculture Nutrition, 2006, 12, 410-417.	1.1	3
76	Chemically mediated antifouling in the red alga Delisea pulchra. Marine Ecology - Progress Series, 2006, 318, 153-163.	0.9	92
77	Density-dependent sea urchin grazing: differential removal of species, changes in community composition and alternative community states. Marine Ecology - Progress Series, 2005, 298, 143-156.	0.9	86
78	Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra. Marine Biology, 1999, 133, 727-736.	0.7	158
79	A new method for determining surface concentrations of marine natural products on seaweeds. Marine Ecology - Progress Series, 1998, 162, 79-87.	0.9	123
80	Broad spectrum effects of secondary metabolites from the red alga <i>delisea pulchra</i> in antifouling assays. Biofouling, 1995, 8, 259-271.	0.8	286