
HÃ¥vard Jostein Haugen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5597674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment of residual pockets using an oscillating chitosan device versus regular curettes alone—A randomized, feasibility parallelâ€arm clinical trial. Journal of Periodontology, 2022, 93, 780-789.	1.7	5
2	Design and clinical application of injectable hydrogels for musculoskeletal therapy. Bioengineering and Translational Medicine, 2022, 7, .	3.9	29
3	Intrinsically disordered peptides enhance regenerative capacities of bone composite xenografts. Materials Today, 2022, 52, 63-79.	8.3	9
4	Characterization of the foreign body response of titanium implants modified with polyphenolic coatings. Journal of Biomedical Materials Research - Part A, 2022, 110, 1341-1355.	2.1	5
5	Reconstructing topography and extent of injury to the superior mesenteric artery plexus in right colectomy with extended D3 mesenterectomy: a composite multimodal 3-dimensional analysis. Surgical Endoscopy and Other Interventional Techniques, 2022, 36, 7607-7618.	1.3	7
6	Dual-functional porous and cisplatin-loaded polymethylmethacrylate cement for reconstruction of load-bearing bone defect kills bone tumor cells. Bioactive Materials, 2022, 15, 120-130.	8.6	8
7	Is There a Better Biomaterial for Dental Implants than Titanium?—A Review and Meta-Study Analysis. Journal of Functional Biomaterials, 2022, 13, 46.	1.8	20
8	Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved Microdiscs. ACS Applied Materials & Interfaces, 2022, 14, 19116-19128.	4.0	8
9	Protein-coated nanostructured surfaces affect the adhesion of <i>Escherichia coli</i> . Nanoscale, 2022, 14, 7736-7746.	2.8	11
10	Solution blow spinning of highly deacetylated chitosan nanofiber scaffolds for dermal wound healing. , 2022, 137, 212871.		13
11	In Vitro Monitoring of Magnesium-Based Implants Degradation by Surface Analysis and Optical Spectroscopy. International Journal of Molecular Sciences, 2022, 23, 6099.	1.8	7
12	Osteoblasts in a Perfusion Flow Bioreactor—Tissue Engineered Constructs of TiO2 Scaffolds and Cells for Improved Clinical Performance. Cells, 2022, 11, 1995.	1.8	6
13	Sodium alendronate loaded poly(<scp>l</scp> -lactide- <i>co</i> -glycolide) microparticles immobilized on ceramic scaffolds for local treatment of bone defects. International Journal of Energy Production and Management, 2021, 8, 293-302.	1.9	13
14	3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering C, 2021, 118, 111433.	3.8	66
15	In vitro biological response of human osteoblasts in 3D chitosan sponges with controlled degree of deacetylation and molecular weight. Carbohydrate Polymers, 2021, 254, 117434.	5.1	34
16	Development and initial testing of an in vitro model simulating class II furcation defects. Clinical and Experimental Dental Research, 2021, 7, 179-188.	0.8	1
17	Guided bone regeneration of chronic nonâ€contained bone defects using a volume stable porous block TiO2 scaffold: An experimental in vivo study. Clinical Oral Implants Research, 2021, 32, 369-381.	1.9	7
18	Multifunctional Surfaces for Improving Soft Tissue Integration. Advanced Healthcare Materials, 2021, 10, e2001985.	3.9	11

#	Article	IF	CITATIONS
19	Tailoring Resorption Rates and Osteogenic Response in Xeno-Hybrid Bone Grafts: The Effect of Added Gelatins. Engineering, 2021, , .	3.2	3
20	Recent Developments in Chitosan-Based Micro/Nanofibers for Sustainable Food Packaging, Smart Textiles, Cosmeceuticals, and Biomedical Applications. Molecules, 2021, 26, 2683.	1.7	36
21	Incorporation of Copper-Doped Mesoporous Bioactive Glass Nanospheres in Experimental Dental Composites: Chemical and Mechanical Characterization. Materials, 2021, 14, 2611.	1.3	17
22	Contrastâ€enhanced nano T reveals soft dental tissues and cellular layers. International Endodontic Journal, 2021, 54, 1275-1288.	2.3	8
23	Human Platelet Lysate-Loaded Poly(ethylene glycol) Hydrogels Induce Stem Cell Chemotaxis <i>In Vitro</i> . Biomacromolecules, 2021, 22, 3486-3496.	2.6	11
24	Hard and soft tissue healing around implants with a modified implant neck configuration: An experimental in vivo preclinical investigation. Clinical Oral Implants Research, 2021, 32, 1127-1141.	1.9	5
25	Highly porous Sr-doped TiO2 ceramics maintain compressive strength after grain boundary corrosion. Journal of the European Ceramic Society, 2021, 41, 5721-5727.	2.8	5
26	Hard tissue volumetric and soft tissue contour linear changes at implants with different surface characteristics after experimentally induced peri-implantitis: an experimental in vivo investigation. Clinical Oral Investigations, 2021, 25, 3905-3918.	1.4	0
27	Early osteoimmunomodulatory effects of magnesium–calcium–zinc alloys. Journal of Tissue Engineering, 2021, 12, 204173142110471.	2.3	21
28	Peri-Implant Health and the Knowing-Doing Gap—A Digital Survey on Procedures and Therapies. Frontiers in Dental Medicine, 2021, 2, .	0.5	4
29	307.7: 3D Bioprinting of Functional Islets With Adipose-derived Stromal Cells in an Alginate/Nanocellulose Scaffold. Transplantation, 2021, 105, S25-S25.	0.5	Ο
30	Impact of simultaneous placement of implant and block bone graft substitute: an in vivo peri-implant defect model. Biomaterials Research, 2021, 25, 43.	3.2	6
31	Bioengineering the ameloblastoma tumour to study its effect on bone nodule formation. Scientific Reports, 2021, 11, 24088.	1.6	11
32	Designing multigradient biomaterials for skin regeneration. Materials Today Advances, 2020, 5, 100051.	2.5	49
33	Structural and Chemical Hierarchy in Hydroxyapatite Coatings. Materials, 2020, 13, 4447.	1.3	7
34	Adhesion of Escherichia Coli to Nanostructured Surfaces and the Role of Type 1 Fimbriae. Nanomaterials, 2020, 10, 2247.	1.9	12
35	Tannic Acid Radicals in the Presence of Alkali Metal Salts and Their Impact on the Formation of Silicate-Phenolic Networks. ACS Applied Materials & Interfaces, 2020, 12, 52457-52466.	4.0	18
36	Osteoimmunomodulatory Effects of Enamel Matrix Derivate and Strontium Coating Layers: A Short- and Long-Term <i>In Vivo</i> Study. ACS Applied Bio Materials, 2020, 3, 5169-5181.	2.3	5

#	Article	IF	CITATIONS
37	Bulk Fill Composites Have Similar Performance to Conventional Dental Composites. International Journal of Molecular Sciences, 2020, 21, 5136.	1.8	35
38	Studies of Dynamic Binding of Amino Acids to TiO ₂ Nanoparticle Surfaces by Solution NMR and Molecular Dynamics Simulations. Langmuir, 2020, 36, 10341-10350.	1.6	19
39	Effect of silica nano-spheres on adhesion of oral bacteria and human fibroblasts. Biomaterial Investigations in Dentistry, 2020, 7, 134-145.	3.0	5
40	Nano-CT as tool for characterization of dental resin composites. Scientific Reports, 2020, 10, 15520.	1.6	19
41	Xeno-Hybrid Bone Graft Releasing Biomimetic Proteins Promotes Osteogenic Differentiation of hMSCs. Frontiers in Cell and Developmental Biology, 2020, 8, 619111.	1.8	4
42	Peri-implant soft tissue integration in humans – influence of materials: A study protocol for a randomised controlled trial and a pilot study results. Contemporary Clinical Trials Communications, 2020, 19, 100643.	0.5	7
43	Injectable Biomaterials for Dental Tissue Regeneration. International Journal of Molecular Sciences, 2020, 21, 3442.	1.8	47
44	Osteogenic potential of poly(ethylene glycol)-amorphous calcium phosphate composites on human mesenchymal stem cells. Journal of Tissue Engineering, 2020, 11, 204173142092684.	2.3	30
45	Xenohybrid Bone Graft Containing Intrinsically Disordered Proteins Shows Enhanced In Vitro Bone Formation. ACS Applied Bio Materials, 2020, 3, 2263-2274.	2.3	10
46	Creation of wellâ€balanced experimental groups for comparative endodontic laboratory studies: a new proposal based on micro T and <i>in silico</i> methods. International Endodontic Journal, 2020, 53, 974-985.	2.3	38
47	Coating doxycycline on titanium-based implants: Two in vivo studies. Bioactive Materials, 2020, 5, 787-797.	8.6	19
48	Biological responses to physicochemical properties of biomaterial surface. Chemical Society Reviews, 2020, 49, 5178-5224.	18.7	183
49	Methacrylation increase growth and differentiation of primary human osteoblasts for gelatin hydrogels. Emergent Materials, 2020, 3, 559-566.	3.2	4
50	Fluoride Modification of Titanium Surfaces Enhance Complement Activation. Materials, 2020, 13, 684.	1.3	5
51	Discrepancy in alloy composition of imported and non-imported porcelain-fused-to-metal (PFM) crowns produced by Norwegian dental laboratories. Biomaterial Investigations in Dentistry, 2020, 7, 41-49.	3.0	3
52	Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion. Medical and Biological Engineering and Computing, 2019, 57, 311-324.	1.6	18
53	Silicateâ€Phenolic Networks: Coordinationâ€Mediated Deposition of Bioinspired Tannic Acid Coatings. Chemistry - A European Journal, 2019, 25, 9870-9874.	1.7	20
54	Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. Journal of Clinical Periodontology, 2019, 46, 82-91.	2.3	132

HÃ¥vard Jostein Haugen

#	Article	IF	CITATIONS
55	<i>In Vitro</i> Performance of Bioinspired Phenolic Nanocoatings for Endosseous Implant Applications. ACS Biomaterials Science and Engineering, 2019, 5, 3340-3351.	2.6	11
56	Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels. Acta Biomaterialia, 2019, 90, 132-145.	4.1	27
57	Hydrofluoric acid treatment of titanium surfaces enhances the proliferation of human gingival fibroblasts. Journal of Tissue Engineering, 2019, 10, 204173141982895.	2.3	13
58	Tantalum nanoparticles reinforced polyetheretherketone shows enhanced bone formation. Materials Science and Engineering C, 2019, 101, 232-242.	3.8	35
59	Silicic Acid-Mediated Formation of Tannic Acid Nanocoatings. Langmuir, 2019, 35, 3327-3336.	1.6	21
60	Biomimetic Biomolecules in Next Generation Xeno-Hybrid Bone Graft Material Show Enhanced In Vitro Bone Cells Response. Journal of Clinical Medicine, 2019, 8, 2159.	1.0	13
61	Grain boundary corrosion in TiO2 bone scaffolds doped with group II cations. Journal of the European Ceramic Society, 2019, 39, 1577-1585.	2.8	5
62	Bone grafts: which is the ideal biomaterial?. Journal of Clinical Periodontology, 2019, 46, 92-102.	2.3	316
63	Polymers and Scaffolds with Improved Blood Compatibility and Enhanced Cellular Response with Focus on Polyurethane Foams Functionalized with Amino-Amide Groups. Journal of Advanced Biotechnology and Bioengineering, 2019, 7, 18-29.	2.3	2
64	Validation of contralateral premolars as the substrate for endodontic comparison studies. International Endodontic Journal, 2018, 51, 942-951.	2.3	10
65	Coagulated concentrated anatase slurry leads to improved strength of ceramic TiO2 bone scaffolds. Ceramics International, 2018, 44, 6265-6271.	2.3	10
66	Attachment and spatial organisation of human mesenchymal stem cells on poly(ethylene glycol) hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 46-53.	1.5	10
67	Injectable synthetic hydrogel for bone regeneration: Physicochemical characterisation of a high and a low pH gelling system. Materials Science and Engineering C, 2018, 90, 67-76.	3.8	11
68	Melatonin as adjunctive therapy in the treatment of periodontitis associated with obesity. Journal of Clinical Periodontology, 2018, 45, 1336-1346.	2.3	21
69	Antibacterial Surface Coating for Bone Scaffolds Based on the Dark Catalytic Effect of Titanium Dioxide. ACS Applied Materials & Interfaces, 2018, 10, 35784-35793.	4.0	15
70	Exploiting Inherent Instability of 2D Black Phosphorus for Controlled Phosphate Release from Blow-Spun Poly(lactide- <i>co</i> -glycolide) Nanofibers. ACS Applied Nano Materials, 2018, 1, 4190-4197.	2.4	14
71	Adiponectin Reduces Bone Stiffness: Verified in a Three-Dimensional Artificial Human Bone Model In Vitro. Frontiers in Endocrinology, 2018, 9, 236.	1.5	11
72	Melatonin expression in periodontitis and obesity: An experimental inâ€vivo investigation. Journal of Periodontal Research, 2018, 53, 825-831.	1.4	18

#	Article	IF	CITATIONS
73	Ceramic scaffolds with immobilized vancomycin-loaded poly(lactide-co-glycolide) microparticles for bone defects treatment. Materials Letters, 2017, 190, 67-70.	1.3	17
74	The role of new zinc incorporated monetite cements on osteogenic differentiation of human mesenchymal stem cells. Materials Science and Engineering C, 2017, 78, 485-494.	3.8	26
75	Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces. Biofouling, 2017, 33, 451-459.	0.8	27
76	Anatomic Comparison of Contralateral Premolars. Journal of Endodontics, 2017, 43, 956-963.	1.4	30
77	Can CAD/CAM resin blocks be considered as substitute for conventional resins?. Dental Materials, 2017, 33, 1362-1370.	1.6	48
78	Improved method for cannula fixation for long-term intracerebral brain infusion. Journal of Neuroscience Methods, 2017, 290, 145-150.	1.3	9
79	Own brand label restorative materials—A false bargain?. Journal of Dentistry, 2017, 56, 84-98.	1.7	11
80	Poly- l -lysine/heparin multilayer coatings prevent blood protein adsorption. Journal of Colloid and Interface Science, 2017, 485, 288-295.	5.0	31
81	Characterization of morphologyâ \in "3D and porous structure. , 2017, , 21-53.		10
82	Methodology for Morphometric Analysis of Modern Human Contralateral Premolars. Journal of Computer Assisted Tomography, 2016, 40, 617-625.	0.5	11
83	Oxidative power of aqueous non-irradiated TiO 2 -H 2 O 2 suspensions: Methylene blue degradation and the role of reactive oxygen species. Applied Catalysis B: Environmental, 2016, 198, 9-15.	10.8	57
84	Effect of carboxylic acid functionalized graphene on physical-chemical and biological performances of polysulfone porous films. Polymer, 2016, 92, 1-12.	1.8	11
85	Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces. Langmuir, 2016, 32, 8050-8060.	1.6	76
86	Ceramic scaffolds enriched with gentamicin loaded poly(lactide- co -glycolide) microparticles for prevention and treatment of bone tissue infections. Materials Science and Engineering C, 2016, 69, 856-864.	3.8	36
87	Antibacterial effects of titanium dioxide in wounds. , 2016, , 439-450.		3
88	TiO ₂ scaffolds in periâ€implant dehiscence defects: an experimental pilot study. Clinical Oral Implants Research, 2016, 27, 1200-1206.	1.9	7
89	Gelatin–poly(vinyl alcohol) porous biocomposites reinforced with graphene oxide as biomaterials. Journal of Materials Chemistry B, 2016, 4, 282-291.	2.9	39
90	Enhanced X-ray absorption for micro-CT analysis of low density polymers. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 805-823.	1.9	18

HÃ¥vard Jostein Haugen

#	Article	IF	CITATIONS
91	Atomic layer deposited TiO2 protects porous ceramic foams from grain boundary corrosion. Corrosion Science, 2016, 106, 35-42.	3.0	9
92	Effect of cathodic polarization on coating doxycycline on titanium surfaces. Materials Science and Engineering C, 2016, 63, 359-366.	3.8	10
93	Grain boundary corrosion of highly porous ceramic TiO 2 foams is reduced by annealing and quenching. Journal of the European Ceramic Society, 2016, 36, 179-188.	2.8	5
94	Variation in Lateral Plate Quality in Threespine Stickleback from Fresh, Brackish and Marine Water: A Micro-Computed Tomography Study. PLoS ONE, 2016, 11, e0164578.	1.1	6
95	Alginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds. Journal of Tissue Engineering, 2015, 6, 204173141557587.	2.3	13
96	Antibacterial effect of doxycycline-coated dental abutment surfaces. Biomedical Materials (Bristol), 2015, 10, 055003.	1.7	18
97	Exploiting novel sterilization techniques for porous polyurethane scaffolds. Journal of Materials Science: Materials in Medicine, 2015, 26, 182.	1.7	22
98	Cell growth on pore-graded biomimetic TiO2 bone scaffolds. Journal of Biomaterials Applications, 2015, 29, 1284-1295.	1.2	8
99	The influence of surface nanoroughness, texture and chemistry of TiZr implant abutment on oral biofilm accumulation. Clinical Oral Implants Research, 2015, 26, 649-656.	1.9	47
100	Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD). Materials, 2014, 7, 2210-2228.	1.3	5
101	Surface hydride on titanium by cathodic polarization promotes human gingival fibroblast growth. Journal of Biomedical Materials Research - Part A, 2014, 102, 1389-1398.	2.1	22
102	Differential response of human gingival fibroblasts to titanium†and titaniumâ€zirconiumâ€modified surfaces. Journal of Periodontal Research, 2014, 49, 425-436.	1.4	58
103	Human gingival fibroblasts function is stimulated on machined hydrided titanium zirconium dental implants. Journal of Dentistry, 2014, 42, 30-38.	1.7	36
104	The effect of hydrofluoric acid treatment of titanium and titanium dioxide surface on primary human osteoblasts. Clinical Oral Implants Research, 2014, 25, 385-394.	1.9	15
105	Simvastatin coating of TiO2 scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2014, 447, 139-144.	1.0	46
106	Bioactive implant surface with electrochemically bound doxycycline promotes bone formation markers in vitro and in vivo. Dental Materials, 2014, 30, 200-214.	1.6	43
107	Simvastatin-activated implant surface promotes osteoblast differentiation inÂvitro. Journal of Biomaterials Applications, 2014, 28, 897-908.	1.2	20
108	TiO2 suspension exposed to H2O2 in ambient light or darkness: Degradation of methylene blue and EPR evidence for radical oxygen species. Applied Catalysis B: Environmental, 2013, 142-143, 662-667.	10.8	52

#	Article	IF	CITATIONS
109	Coating of metal implant materials with strontium. Journal of Materials Science: Materials in Medicine, 2013, 24, 2537-2548.	1.7	15
110	In vitro study on silk fibroin textile structure for Anterior Cruciate Ligament regeneration. Materials Science and Engineering C, 2013, 33, 3601-3608.	3.8	40
111	Increased reactivity and in vitro cell response of titanium based implant surfaces after anodic oxidation. Journal of Materials Science: Materials in Medicine, 2013, 24, 2761-2773.	1.7	9
112	Polarization of modified titanium and titanium–zirconium creates nano-structures while hydride formation is modulated. Applied Surface Science, 2013, 282, 7-16.	3.1	14
113	Chemical debridement of contaminated titanium surfaces: An <i>in vitro</i> study . Acta Odontologica Scandinavica, 2013, 71, 957-964.	0.9	11
114	Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model. Acta Biomaterialia, 2013, 9, 5390-5399.	4.1	76
115	Effect of short LED lamp exposure on wear resistance, residual monomer and degree of conversion for Filtek Z250 and Tetric EvoCeram composites. Dental Materials, 2013, 29, 824-834.	1.6	27
116	Hydrogen content in titanium and a titanium–zirconium alloy after acid etching. Materials Science and Engineering C, 2013, 33, 1282-1288.	3.8	34
117	Processing of highly porous TiO2 bone scaffolds with improved compressive strength. Journal of the European Ceramic Society, 2013, 33, 15-24.	2.8	47
118	Effect of TiO ₂ scaffolds coated with alginate hydrogel containing a prolineâ€rich peptide on osteoblast growth and differentiation <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2013, 101A, 1768-1777.	2.1	12
119	Enhanced in vitro osteoblast differentiation on TiO ₂ scaffold coated with alginate hydrogel containing simvastatin. Journal of Tissue Engineering, 2013, 4, 204173141351567.	2.3	30
120	Preparation and Characterization of Shape Memory Polymer Scaffolds via Solvent Casting/Particulate Leaching. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 119-126.	0.7	26
121	Supercritical CO ₂ in injection molding can produce open porous polyurethane scaffolds – a parameter study. Journal of Cellular Plastics, 2012, 48, 141-159.	1.2	34
122	Dimensional Ridge Preservation with a Novel Highly Porous TiO2Scaffold: An Experimental Study in Minipigs. International Journal of Biomaterials, 2012, 2012, 1-9.	1.1	2
123	Enhanced Osteoblast Differentiation on Scaffolds Coated with TiO2 Compared to SiO2 and CaP Coatings. Biointerphases, 2012, 7, 36.	0.6	29
124	Microcomputed Tomographic and Histologic Analysis of Animal Experimental Degree II Furcation Defects Treated With Porous Titanium Granules or Deproteinized Bovine Bone. Journal of Periodontology, 2012, 83, 211-221.	1.7	11
125	Effect of ZrO2 addition on the mechanical properties of porous TiO2 bone scaffolds. Materials Science and Engineering C, 2012, 32, 1386-1393.	3.8	21
126	Enzymatically induced mineralization of plateletâ€rich fibrin. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1335-1346.	2.1	25

#	Article	IF	CITATIONS
127	Bone formation in TiO2 bone scaffolds in extraction sockets of minipigs. Acta Biomaterialia, 2012, 8, 2384-2391.	4.1	56
128	TiO ₂ Scaffolds Sustain Differentiation of MC3T3-E1 Cells. Journal of Biomaterials and Tissue Engineering, 2012, 2, 336-344.	0.0	14
129	A Novel Ultra-porous Titanium Dioxide Ceramic with Excellent Biocompatibility. Journal of Biomaterials Applications, 2011, 25, 559-580.	1.2	67
130	Wear model simulating clinical abrasion on composite filling materials. Dental Materials Journal, 2011, 30, 739-748.	0.8	11
131	Focused crossed Andreev reflection. Europhysics Letters, 2011, 93, 67005.	0.7	3
132	The effect of fluoride surface modification of ceramic TiO ₂ on the surface properties and biological response of osteoblastic cells <i>in vitro</i> . Biomedical Materials (Bristol), 2011, 6, 045006.	1.7	17
133	Shape memory polymer cellular solid design for medical applications. Smart Materials and Structures, 2011, 20, 035004.	1.8	39
134	Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results. Journal of Materials Science: Materials in Medicine, 2010, 21, 1005-1011.	1.7	28
135	Ultra-porous titanium oxide scaffold with high compressive strength. Journal of Materials Science: Materials in Medicine, 2010, 21, 2783-2792.	1.7	69
136	Fibroblastic response and surface characterization of O 2 -plasma-treated thermoplastic polyetherurethane. Biomedical Materials (Bristol), 2010, 5, 025002.	1.7	11
137	Crossed Andreev reflection versus electron transfer in three-terminal graphene devices. Physical Review B, 2010, 81, .	1.1	13
138	Impact of trace elements on biocompatibility of titanium scaffolds. Biomedical Materials (Bristol), 2010, 5, 015003.	1.7	20
139	The Effects of Mold Design on the Pore Morphology of Polymers Produced with MuCell ®Technology. Journal of Cellular Plastics, 2010, 46, 519-530.	1.2	13
140	Controlled electro-implementation of fluoride in titanium implant surfaces enhances cortical bone formation and mineralization. Acta Biomaterialia, 2010, 6, 1025-1032.	4.1	41
141	Titanium implant surface modification by cathodic reduction in hydrofluoric acid: Surface characterization and <i>in vivo</i> performance. Journal of Biomedical Materials Research - Part A, 2009, 88A, 581-588.	2.1	100
142	The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials, 2009, 30, 736-742.	5.7	186
143	Loadable TiO2 scaffolds—A correlation study between processing parameters, micro CT analysis and mechanical strength. Journal of the European Ceramic Society, 2009, 29, 2773-2781.	2.8	45
144	Coating of polyurethane scaffolds with collagen: comparison of coating and cross-linking techniques. Journal of Materials Science: Materials in Medicine, 2008, 19, 2713-2719.	1.7	19

#	Article	IF	CITATIONS
145	Hydride formation on titanium surfaces by cathodic polarization. Applied Surface Science, 2008, 255, 3011-3015.	3.1	44
146	Spin transport in proximity-induced ferromagnetic graphene. Physical Review B, 2008, 77, .	1.1	449
147	Effect of different Î ³ -irradiation doses on cytotoxicity and material properties of porous polyether-urethane polymer. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 415-423.	1.6	34
148	A novel processing method for injection-molded polyether–urethane scaffolds. Part 1: Processing. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 77B, 65-72.	1.6	29
149	A novel processing method for injection-molded polyether–urethane scaffolds. Part 2: Cellular interactions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 77B, 73-78.	1.6	13
150	Biostability of polyether-urethane scaffolds: A comparison of two novel processing methods and the effect of higher gamma-irradiation dose. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 73B, 229-237.	1.6	9
151	MuCell® technology for injection molding: A processing method for polyether-urethane scaffolds. Journal of Materials Science, 2005, 40, 4613-4618.	1.7	22
152	Manufacturing of Structured TiO ₂ -Surfaces for Cell Carrier Application. Materials Science Forum, 2005, 492-493, 171-176.	0.3	0
153	Processing and Characterisation of a Potential TiO ₂ Scaffold. Key Engineering Materials, 2004, 254-256, 941-944.	0.4	0
154	Water as foaming agent for open cell polyurethane structures. Journal of Materials Science: Materials in Medicine, 2004, 15, 343-346.	1.7	33
155	Ceramic TiO2-foams: characterisation of a potential scaffold. Journal of the European Ceramic Society, 2004, 24, 661-668.	2.8	110
156	Manufacturing of Biocompatible TiO ₂ -Surface-Structures with a Water Based Tape Casting. Key Engineering Materials, 2003, 254-256, 937-940.	0.4	1
157	NEU-ENTWICKELTES HERSTELLUNGSVERFAHREN VON POLYURETHAN-SCAFFOLDS. Biomedizinische Technik, 2003, 48, 380-381.	0.9	0
158	Regulatory Loops Consisting of Transcription Factors and microRNA Species Determine the Mineralizing Characteristics of Cell Phenotypes — Implications for Bone Engineering and Prevention of Soft Tissue Mineralization. , 0, , .		2
159	Vitamin K2 Facilitating Inter-Organ Cross-Talk. , 0, , .		3

160 Vitamin K2 and its Impact on Tooth Epigenetics. , 0, , .

3