
Maria Molinos-Senante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5597153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy efficiency in Spanish wastewater treatment plants: A non-radial DEA approach. Science of the Total Environment, 2011, 409, 2693-2699.	8.0	257
2	Environmental and economic profile of six typologies of wastewater treatment plants. Water Research, 2011, 45, 5997-6010.	11.3	255
3	Economic feasibility study for wastewater treatment: A cost–benefit analysis. Science of the Total Environment, 2010, 408, 4396-4402.	8.0	242
4	Assessing the sustainability of small wastewater treatment systems: A composite indicator approach. Science of the Total Environment, 2014, 497-498, 607-617.	8.0	139
5	Cost–benefit analysis of water-reuse projects for environmental purposes: A case study for Spanish wastewater treatment plants. Journal of Environmental Management, 2011, 92, 3091-3097.	7.8	129
6	Economic valuation of environmental benefits from wastewater treatment processes: An empirical approach for Spain. Science of the Total Environment, 2010, 408, 953-957.	8.0	127
7	Cost modelling for wastewater treatment processes. Desalination, 2011, 268, 1-5.	8.2	121
8	Economic Feasibility Study for Phosphorus Recovery Processes. Ambio, 2011, 40, 408-416.	5.5	117
9	Assessment of wastewater treatment alternatives for small communities: An analytic network process approach. Science of the Total Environment, 2015, 532, 676-687.	8.0	101
10	Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems. Journal of Cleaner Production, 2015, 107, 410-419.	9.3	96
11	Efficiency assessment of wastewater treatment plants: A data envelopment analysis approach integrating technical, economic, and environmental issues. Journal of Environmental Management, 2016, 167, 160-166.	7.8	96
12	Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions. Resources and Energy Economics, 2014, 38, 125-140.	2.5	90
13	Measuring the CO 2 shadow price for wastewater treatment: A directional distance function approach. Applied Energy, 2015, 144, 241-249.	10.1	90
14	Assessment of wastewater treatment plant design for small communities: Environmental and economic aspects. Science of the Total Environment, 2012, 427-428, 11-18.	8.0	82
15	Assessing the efficiency of wastewater treatment plants in an uncertain context: a DEA with tolerances approach. Environmental Science and Policy, 2012, 18, 34-44.	4.9	80
16	Benchmarking in wastewater treatment plants: a tool to save operational costs. Clean Technologies and Environmental Policy, 2014, 16, 149-161.	4.1	77
17	Selecting appropriate wastewater treatment technologies using a choosing-by-advantages approach. Science of the Total Environment, 2018, 625, 819-827.	8.0	70
18	The Luenberger productivity indicator in the water industry: An empirical analysis for England and Wales. Utilities Policy, 2014, 30, 18-28.	4.0	63

#	Article	IF	CITATIONS
19	The impact of privatization approaches on the productivity growth of the water industry: A case study of Chile. Environmental Science and Policy, 2015, 50, 166-179.	4.9	60
20	The Economics of Wastewater Treatment Decentralization: A Techno-economic Evaluation. Environmental Science & Technology, 2018, 52, 8965-8976.	10.0	58
21	Including the environmental criteria when selecting a wastewater treatment plant. Environmental Modelling and Software, 2014, 56, 74-82.	4.5	57
22	Water scarcity and affordability in urban water pricing: A case study of Chile. Utilities Policy, 2016, 43, 107-116.	4.0	55
23	Factors affecting eco-efficiency of municipal waste services in Tuscan municipalities: An empirical investigation of different management models. Waste Management, 2020, 105, 384-394.	7.4	55
24	The role of environmental variables on the efficiency of water and sewerage companies: a case study of Chile. Environmental Science and Pollution Research, 2015, 22, 10242-10253.	5.3	53
25	Water utility efficiency assessment in Italy by accounting for service quality: An empirical investigation. Utilities Policy, 2017, 45, 97-108.	4.0	53
26	Eco-efficiency assessment of wastewater treatment plants using a weighted Russell directional distance model. Journal of Cleaner Production, 2016, 137, 1066-1075.	9.3	51
27	Assessing the sustainability of water companies: A synthetic indicator approach. Ecological Indicators, 2016, 61, 577-587.	6.3	51
28	Assessing the efficiency of wastewater treatment plants: A double-bootstrap approach. Journal of Cleaner Production, 2017, 164, 315-324.	9.3	48
29	Assesing the Impact of Quality of Service on the Productivity of Water Industry: a Malmquist-Luenberger Approach for England and Wales. Water Resources Management, 2017, 31, 2407-2427.	3.9	48
30	Assessing changes in eco-productivity of wastewater treatment plants: The role of costs, pollutant removal efficiency, and greenhouse gas emissions. Environmental Impact Assessment Review, 2018, 69, 24-31.	9.2	46
31	Comparing changes in productivity among private water companies integrating quality of service: A metafrontier approach. Journal of Cleaner Production, 2019, 216, 597-606.	9.3	45
32	Estimating the environmental and resource costs of leakage in water distribution systems: A shadow price approach. Science of the Total Environment, 2016, 568, 180-188.	8.0	44
33	Development and application of the Hicks-Moorsteen productivity index for the total factor productivity assessment of wastewater treatment plants. Journal of Cleaner Production, 2016, 112, 3116-3123.	9.3	44
34	A review of Payment for Ecosystem Services for the economic internalization of environmental externalities: A water perspective. Geoforum, 2016, 70, 115-118.	2.5	44
35	Impact of regulation on English and Welsh water-only companies: an input-distance function approach. Environmental Science and Pollution Research, 2017, 24, 16994-17005.	5.3	43
36	Measuring the eco-efficiency of wastewater treatment plants under data uncertainty. Journal of Environmental Management, 2018, 226, 484-492.	7.8	43

#	Article	IF	CITATIONS
37	Reducing CO2 emissions from drinking water treatment plants: A shadow price approach. Applied Energy, 2018, 210, 623-631.	10.1	42
38	Resilience of critical infrastructure to natural hazards: A review focused on drinking water systems. International Journal of Disaster Risk Reduction, 2020, 48, 101575.	3.9	42
39	Tariffs and Cost Recovery in Water Reuse. Water Resources Management, 2013, 27, 1797-1808.	3.9	41
40	Profit, productivity and price performance changes in the water and sewerage industry: an empirical application for England and Wales. Clean Technologies and Environmental Policy, 2015, 17, 1005-1018.	4.1	41
41	Productivity change and its drivers for the Chilean water companies: A comparison of full private and concessionary companies. Journal of Cleaner Production, 2018, 183, 908-916.	9.3	40
42	Benchmarking the efficiency of the Chilean water and sewerage companies: a double-bootstrap approach. Environmental Science and Pollution Research, 2018, 25, 8432-8440.	5.3	40
43	Energy intensity modeling for wastewater treatment technologies. Science of the Total Environment, 2018, 630, 1565-1572.	8.0	39
44	Energy intensity of treating drinking water: Understanding the influence of factors. Applied Energy, 2017, 202, 275-281.	10.1	38
45	A management and optimisation model for water supply planning in water deficit areas. Journal of Hydrology, 2014, 515, 139-146.	5.4	37
46	Assessing the influence of exogenous and quality of service variables on water companies´ performance using a true-fixed stochastic frontier approach. Urban Water Journal, 2018, 15, 682-691.	2.1	36
47	Impact of environmental variables on the efficiency of water companies in England and Wales: a double-bootstrap approach. Environmental Science and Pollution Research, 2019, 26, 31014-31025.	5.3	36
48	A composite indicator approach to assess the sustainability and resilience of wastewater management alternatives. Science of the Total Environment, 2020, 725, 138286.	8.0	35
49	Benchmarking energy efficiency in drinking water treatment plants: Quantification of potential savings. Journal of Cleaner Production, 2018, 176, 417-425.	9.3	34
50	Tariffs and efficient performance by water suppliers: an empirical approach. Water Policy, 2012, 14, 854-864.	1.5	33
51	Comparing the dynamic performance of wastewater treatment systems: A metafrontier Malmquist productivity index approach. Journal of Environmental Management, 2015, 161, 309-316.	7.8	32
52	Assessment of the Total Factor Productivity Change in the English and Welsh Water Industry: a FĀ r ē-Primont Productivity Index Approach. Water Resources Management, 2017, 31, 2389-2405.	3.9	32
53	Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics. Applied Energy, 2018, 229, 1095-1102.	10.1	32
54	Application of a multi-criteria decision model to select of design choices for WWTPs. Clean Technologies and Environmental Policy, 2016, 18, 1097-1109.	4.1	31

#	Article	IF	CITATIONS
55	How does seasonality affect water reuse possibilities? An efficiency and cost analysis. Resources, Conservation and Recycling, 2012, 58, 125-131.	10.8	30
56	Economic valuation of environmental benefits of removing pharmaceutical and personal care products from WWTP effluents by ozonation. Science of the Total Environment, 2013, 461-462, 409-415.	8.0	29
57	Assessing the relative efficiency of water companies in the English and welsh water industry: a metafrontier approach. Environmental Science and Pollution Research, 2015, 22, 16987-16996.	5.3	29
58	Evaluation of the economics of desalination by integrating greenhouse gas emission costs: An empirical application for Chile. Renewable Energy, 2019, 133, 1327-1337.	8.9	28
59	Evaluation of economies of scale in eco-efficiency of municipal waste management: an empirical approach for Chile. Environmental Science and Pollution Research, 2021, 28, 28337-28348.	5.3	28
60	Assessing the efficiency of Chilean water and sewerage companies accounting for uncertainty. Environmental Science and Policy, 2016, 61, 116-123.	4.9	27
61	Price-cap regulation in the English and Welsh water industry: A proposal for measuring productivity performance. Utilities Policy, 2016, 41, 22-30.	4.0	26
62	Assessing the quality of service for drinking water supplies in rural settings: A synthetic index approach. Journal of Environmental Management, 2019, 247, 613-623.	7.8	26
63	Techno-economical efficiency and productivity change of wastewater treatment plants: the role of internal and external factors. Journal of Environmental Monitoring, 2011, 13, 3448.	2.1	25
64	Cost modeling for sludge and waste management from wastewater treatment plants: an empirical approach for Spain. Desalination and Water Treatment, 2013, 51, 5414-5420.	1.0	24
65	Estimating the cost of improving service quality in water supply: A shadow price approach for England and wales. Science of the Total Environment, 2016, 539, 470-477.	8.0	24
66	Assessing the productivity change of water companies in England and Wales: A dynamic metafrontier approach. Journal of Environmental Management, 2017, 197, 1-9.	7.8	24
67	Economic feasibility study for new technological alternatives in wastewater treatment processes: a review. Water Science and Technology, 2012, 65, 898-906.	2.5	23
68	Eco-efficiency assessment of municipal solid waste services: Influence of exogenous variables. Waste Management, 2021, 130, 136-146.	7.4	23
69	Economic feasibility study for intensive and extensive wastewater treatment considering greenhouse gases emissions. Journal of Environmental Management, 2013, 123, 98-104.	7.8	22
70	Accounting for service quality to customers in the efficiency of water companies: evidence from England and Wales. Water Policy, 2016, 18, 513-532.	1.5	22
71	Assessing productivity changes in water companies: a comparison of the Luenberger and Luenberger-Hicks-Moorsteen productivity indicators. Urban Water Journal, 2018, 15, 626-635.	2.1	21
72	The third route: A techno-economic evaluation of extreme water and wastewater decentralization. Water Research, 2022, 218, 118408.	11.3	21

5

#	Article	IF	CITATIONS
73	Optimal management of substrates in anaerobic co-digestion: An ant colony algorithm approach. Waste Management, 2016, 50, 49-54.	7.4	20
74	Performance of fully private and concessionary water and sewerage companies: a metafrontier approach. Environmental Science and Pollution Research, 2016, 23, 11620-11629.	5.3	20
75	Efficiency Assessment of Water and Sewerage Companies: a Disaggregated Approach Accounting for Service Quality. Water Resources Management, 2016, 30, 4311-4328.	3.9	20
76	Are water tariffs sufficient incentives to reduce water leakages? An empirical approach for Chile. Utilities Policy, 2019, 61, 100971.	4.0	20
77	Adequacy of DEA as a regulatory tool in the water sector. The impact of data uncertainty Environmental Science and Policy, 2018, 85, 155-162.	4.9	19
78	The cost of reducing unplanned water supply interruptions: A parametric shadow price approach. Science of the Total Environment, 2020, 719, 137487.	8.0	19
79	Marginal abatement cost of carbon dioxide emissions in the provision of urban drinking water. Sustainable Production and Consumption, 2021, 25, 439-449.	11.0	19
80	Assessing disproportionate costs to achieve good ecological status of water bodies in a Mediterranean river basin. Journal of Environmental Monitoring, 2011, 13, 2091.	2.1	18
81	Flexible versus common technology to estimate economies of scale and scope in the water and sewerage industry: an application to England and Wales. Environmental Science and Pollution Research, 2018, 25, 14158-14170.	5.3	16
82	Italian regulatory reform and water utility performance: An impact analysis. Utilities Policy, 2018, 52, 95-102.	4.0	16
83	Cost Efficiency of English and Welsh Water Companies: a Meta-Stochastic Frontier Analysis. Water Resources Management, 2019, 33, 3041-3055.	3.9	16
84	Are participants in markets for water rights more efficient in the use of water than non-participants? A case study for LimarÃ-Valley (Chile). Environmental Science and Pollution Research, 2016, 23, 10665-10678.	5.3	15
85	Assessing the quality of service to customers provided by water utilities: A synthetic index approach. Ecological Indicators, 2017, 78, 214-220.	6.3	15
86	Estimating Economies of Scale and Scope in the English and Welsh Water Industry Using Flexible Technology. Journal of Water Resources Planning and Management - ASCE, 2017, 143, 04017060.	2.6	15
87	Productivity growth and its drivers in the Chilean water and sewerage industry: a comparison of alternative benchmarking techniques. Urban Water Journal, 2019, 16, 353-364.	2.1	15
88	Drivers of productivity change in water companies: an empirical approach for England and Wales. International Journal of Water Resources Development, 2020, 36, 972-991.	2.0	15
89	Eco-Efficiency of the English and Welsh Water Companies: A Cross Performance Assessment. International Journal of Environmental Research and Public Health, 2021, 18, 2831.	2.6	15
90	Evaluation of energy efficiency of wastewater treatment plants: The influence of the technology and aging factors. Applied Energy, 2022, 310, 118535.	10.1	15

MARIA MOLINOS-SENANTE

#	Article	IF	CITATIONS
91	Cross-national comparison of efficiency for water utilities: a metafrontier approach. Clean Technologies and Environmental Policy, 2016, 18, 1611-1619.	4.1	14
92	Productivity growth of wastewater treatment plants – accounting for environmental impacts: a Malmquist-Luenberger index approach. Urban Water Journal, 2016, 13, 476-485.	2.1	14
93	Optimal fresh water blending: A methodological approach to improve the resilience of water supply systems. Science of the Total Environment, 2018, 624, 1308-1315.	8.0	14
94	How much should customers be compensated for interruptions in the drinking water supply?. Science of the Total Environment, 2017, 586, 642-649.	8.0	13
95	Measuring the wastewater treatment plants productivity change: Comparison of the Luenberger and Luenberger-Hicks-Moorsteen Productivity Indicators. Journal of Cleaner Production, 2019, 229, 75-83.	9.3	13
96	Evaluating trends in the performance of Chilean water companies: impact of quality of service and environmental variables. Environmental Science and Pollution Research, 2020, 27, 13155-13165.	5.3	13
97	Benchmarking the efficiency of water and sewerage companies: Application of the stochastic non-parametric envelopment of data (stoned) method. Expert Systems With Applications, 2021, 186, 115711.	7.6	13
98	The welfare costs of non-marginal water pricing: evidence from the water only companies in England and Wales. Urban Water Journal, 2017, 14, 947-953.	2.1	12
99	Evaluation of the influence of economic groups on the efficiency and quality of service of water companies: an empirical approach for Chile. Environmental Science and Pollution Research, 2018, 25, 23251-23260.	5.3	12
100	Benchmarking energy efficiency of water treatment plants: Effects of data variability. Science of the Total Environment, 2020, 701, 134960.	8.0	12
101	Are Frontier Efficiency Methods Adequate to Compare the Efficiency of Water Utilities for Regulatory Purposes?. Water (Switzerland), 2020, 12, 1046.	2.7	12
102	Performance assessment of water companies: A metafrontier approach accounting for quality of service and group heterogeneities. Socio-Economic Planning Sciences, 2021, 74, 100948.	5.0	12
103	Life Cycle Costing: a tool to manage the urban water cycle. Journal of Water Supply: Research and Technology - AQUA, 2013, 62, 468-476.	1.4	11
104	Water rate to manage residential water demand with seasonality: peak-load pricing and increasing block rates approach. Water Policy, 2014, 16, 930-944.	1.5	11
105	Influence of environmental variables on the energy efficiency of drinking water treatment plants. Science of the Total Environment, 2022, 833, 155246.	8.0	11
106	Impact of external costs of unplanned supply interruptions on water company efficiency: Evidence from Chile. Utilities Policy, 2020, 66, 101087.	4.0	10
107	Technological and operational characteristics of the Chilean water and sewerage industry: A comparison of public, concessionary and private companies. Journal of Cleaner Production, 2020, 264, 121772.	9.3	10
108	The Cost of Reducing Municipal Unsorted Solid Waste: Evidence from Municipalities in Chile. Sustainability, 2021, 13, 6607.	3.2	10

#	Article	IF	CITATIONS
109	Assessing the Quality of Service of Water Companies: a â€~Benefit of the Doubt' Composite Indicator. Social Indicators Research, 2021, 155, 371-387.	2.7	10
110	Measuring operational and quality-adjusted efficiency of Chilean water companies. Npj Clean Water, 2022, 5, .	8.0	10
111	Productivity change of the Spanish Port System: impact of the economic crisis. Maritime Policy and Management, 2016, 43, 683-705.	3.8	9
112	Dynamic goal programming synthetic indicator: an application for water companies sustainability assessment. Urban Water Journal, 2018, 15, 592-600.	2.1	9
113	Evaluating the Eco-Efficiency of Wastewater Treatment Plants: Comparison of Optimistic and Pessimistic Approaches. Sustainability, 2020, 12, 10580.	3.2	9
114	Comparing Operational, Environmental and Eco-Efficiency of Water Companies in England and Wales. Energies, 2021, 14, 3635.	3.1	9
115	Urban Water Management. Global Issues in Water Policy, 2018, , 131-150.	0.1	8
116	Decomposition of Productivity Growth of Water and Sewerage Companies: An Empirical Approach for Chile. Water Resources Management, 2017, 31, 4309-4321.	3.9	7
117	Profit change and its drivers in the English and Welsh water industry: is output quality important?. Water Policy, 2018, 20, 995-1012.	1.5	7
118	Assessment of Energy Efficiency and Its Determinants for Drinking Water Treatment Plants Using A Double-Bootstrap Approach. Energies, 2019, 12, 765.	3.1	7
119	Estimating Profit, Price, and Productivity Changes in Water Industry Using Bennet-Bowley Indicator. Journal of Water Resources Planning and Management - ASCE, 2019, 145, 04019011.	2.6	7
120	The impact of greenhouse gas emissions on the performance of water companies: a dynamic assessment. Environmental Science and Pollution Research, 2021, 28, 48284-48297.	5.3	7
121	Water company productivity change: A disaggregated approach accounting for changes in inputs and outputs. Utilities Policy, 2021, 70, 101190.	4.0	7
122	Cost-effectiveness analysis of sewer mining versus centralized wastewater treatment: Case study of the Arga river basin, Spain. Urban Water Journal, 2016, 13, 321-330.	2.1	6
123	Comparative energy efficiency of wastewater treatment technologies: a synthetic index approach. Clean Technologies and Environmental Policy, 2018, 20, 1819-1834.	4.1	6
124	Estimating technical efficiency and allocative distortions of water companies: evidence from the English and Welsh water and sewerage industry. Environmental Science and Pollution Research, 2020, 27, 35174-35183.	5.3	6
125	Productivity growth, economies of scale and scope in the water and sewerage industry: The Chilean case. PLoS ONE, 2021, 16, e0251874.	2.5	6
126	Measuring the quality of service of water companies: A two-stage goal programming synthetic index proposal. Socio-Economic Planning Sciences, 2022, 79, 101140.	5.0	6

#	Article	IF	CITATIONS
127	Benchmarking the economic and environmental performance of water utilities: a comparison of frontier techniques. Benchmarking, 2022, 29, 3176-3193.	4.6	6
128	Estimating performance and savings of water leakages and unplanned water supply interruptions in drinking water providers. Resources, Conservation and Recycling, 2022, 186, 106538.	10.8	6
129	Economic Feasibility Study for Improving Drinking Water Quality: A Case Study of Arsenic Contamination in Rural Argentina. EcoHealth, 2014, 11, 476-490.	2.0	5
130	A metastochastic frontier analysis for technical efficiency comparison of water companies in England and Wales. Environmental Science and Pollution Research, 2020, 27, 729-740.	5.3	5
131	Measuring the marginal costs of reducing water leakage: the case of water and sewerage utilities in Chile. Environmental Science and Pollution Research, 2021, 28, 32733-32743.	5.3	5
132	Current state of water management in Japan. Journal of Water Supply: Research and Technology - AQUA, 2014, 63, 611-624.	1.4	4
133	Assessment of the Total Factor Productivity Change in the Spanish Ports: Hicks–Moorsteen Productivity Index Approach. Journal of Waterway, Port, Coastal and Ocean Engineering, 2016, 142, .	1.2	4
134	Changes in the total costs of the English and Welsh water and sewerage industry: The decomposed effect of price and quantity inputs on efficiency. Utilities Policy, 2020, 66, 101063.	4.0	4
135	Financial winners and losers since the privatization of the English and Welsh water and sewerage industry: a profit decomposition approach. Urban Water Journal, 2020, 17, 224-234.	2.1	4
136	Marginal Cost of Reducing Unplanned Water Supply Interruptions: Influence of Water Company Ownership. Journal of Water Resources Planning and Management - ASCE, 2021, 147, 04020112.	2.6	4
137	Assessing the dynamic carbon performance of water companies: a parametric approach. International Journal of Environmental Science and Technology, 2022, 19, 5461-5472.	3.5	4
138	Pricing for Reclaimed Water in Valencia, Spain: Externalities and Cost Recovery. Global Issues in Water Policy, 2015, , 431-442.	0.1	4
139	Measuring the eco-efficiency of the provision of drinking water by two-stage network data envelopment analysis. Environment, Development and Sustainability, 0, , 1.	5.0	4
140	Performance assessment of the Chilean water sector: A network data envelopment analysis approach. Utilities Policy, 2022, 75, 101350.	4.0	4
141	Measuring technical, environmental and eco-efficiency in municipal solid waste management in Chile. International Journal of Sustainable Engineering, 2022, 15, 71-85.	3.5	4
142	Drivers of profitability and productivity growth in the English and Welsh water industry since privatization. International Journal of Water Resources Development, 2021, 37, 865-881.	2.0	3
143	Assessing the marginal cost of reducing greenhouse gas emissions in the English and Welsh water and sewerage industry: A parametric approach. Utilities Policy, 2021, 70, 101193.	4.0	3
144	Changes to The Productivity of Water Companies: Comparison of Fully Private and Concessionary Water Companies. Water Resources Management, 2021, 35, 3355-3371.	3.9	3

MARIA MOLINOS-SENANTE

#	Article	IF	CITATIONS
145	The Influence of Seasonality on the Economic Efficiency of Wastewater Treatment Plants. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 65-74.	0.2	3
146	Assessing the dynamic eco-efficiency of Italian municipalities by accounting for the ownership of the entrusted waste utilities. Utilities Policy, 2021, 73, 101311.	4.0	3
147	Prediction of the efficiency in the water industry: An artificial neural network approach. Chemical Engineering Research and Design, 2022, 160, 41-48.	5.6	3
148	The impact of model specification and environmental variables on measuring the overall technical efficiency of water and sewerage services: Evidence from Chile. Structural Change and Economic Dynamics, 2022, 61, 191-198.	4.5	3
149	Challenges and opportunities for drinking water treatment residuals (DWTRs) in metal-rich areas: an integrated approach. Environmental Science and Pollution Research, 2022, 29, 65599-65612.	5.3	3
150	Economic effects of the consolidation of water utilities in Japan. Water Science and Technology: Water Supply, 2014, 14, 909-916.	2.1	2
151	Total factor productivity assessment of water and sanitation services: an empirical application including quality of service factors. Environmental Science and Pollution Research, 2021, 28, 37818-37829.	5.3	2
152	Economies of integration and sources of change in productivity in the Chilean water and sewerage industry: a translog cost function approach. Environmental Science and Pollution Research, 2022, 29, 8503-8513.	5.3	2
153	Wastewater management and reuse. , 2015, , .		2
154	Estimation of greenhouse gases shadow price in the English and Welsh water industry. Environmental Science and Pollution Research, 2022, 29, 16612-16623.	5.3	2
155	Domestic Uses of Water. World Water Resources, 2021, , 259-271.	0.4	2
156	How Much Does it Cost to Collect Recyclable and Residual Waste in Medium-Income Countries? A Case Study in the Chilean Waste Sector. Journal of the Air and Waste Management Association, 0, , .	1.9	2
157	Estimation and evaluation of productivity change and its drivers in the English and Welsh water sector: a stochastic cost frontier approach. Urban Water Journal, 2019, 16, 625-633.	2.1	1
158	Understanding performance change of the water industry: how do size and patterns of output mix associate with efficiency?. Urban Water Journal, 0, , 1-11.	2.1	1
159	Performance analysis of Chilean water companies after the privatization of the industry: the influence of ownership. Water International, 2022, 47, 114-131.	1.0	1
160	Feasibility Studies for Water Reuse Projects: Economic Valuation of Environmental Benefits. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 181-190.	0.2	0
161	Drivers of productivity change: a comparison of English and Welsh water only and water and sewerage companies. Urban Water Journal, 2021, 18, 342-351.	2.1	0
162	Measuring the overall cost efficiency of water companies and its determinants: an empirical study of stochastic frontier models. Environmental Science and Pollution Research, 2021, , 1.	5.3	0

#	Article	IF	CITATIONS
163	Decomposition of Cost Efficiency Into Persistent and Transient Efficiency in the Provision of Water Services: Evidence from England and Wales. Water Resources Management, 0, , 1.	3.9	0