## Romain Danneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5597024/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Phase-dependent microwave response of a graphene Josephson junction. Physical Review Research, 2022, 4, .                                                      | 3.6  | 13        |
| 2  | Spin and valley degrees of freedom in a bilayer graphene quantum point contact: Zeeman splitting and interaction effects. Physical Review Research, 2022, 4, . | 3.6  | 0         |
| 3  | Ballistic Graphene Cooper Pair Splitter. Physical Review Letters, 2021, 126, 147701.                                                                           | 7.8  | 18        |
| 4  | Critical current fluctuations in graphene Josephson junctions. Scientific Reports, 2021, 11, 19900.                                                            | 3.3  | 4         |
| 5  | Anomalous Cyclotron Motion in Graphene Superlattice Cavities. Physical Review Letters, 2020, 125, 217701.                                                      | 7.8  | 11        |
| 6  | Electrostatic superlattices on scaled graphene lattices. Communications Physics, 2020, 3, .                                                                    | 5.3  | 18        |
| 7  | Berry phase in superconducting multiterminal quantum dots. Physical Review B, 2020, 101, .                                                                     | 3.2  | 16        |
| 8  | Engineering the Floquet spectrum of superconducting multiterminal quantum dots. Physical Review<br>B, 2019, 100, .                                             | 3.2  | 19        |
| 9  | Andreev reflection in ballistic normal metal/graphene/superconductor junctions. Physical Review B, 2019, 100, .                                                | 3.2  | 10        |
| 10 | Investigation on Metal–Oxide Graphene Field-Effect Transistors With Clamped Geometries. IEEE<br>Journal of the Electron Devices Society, 2019, 7, 964-968.     | 2.1  | 1         |
| 11 | Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study. ACS<br>Omega, 2019, 4, 2256-2260.                                 | 3.5  | 18        |
| 12 | Tailoring supercurrent confinement in graphene bilayer weak links. Nature Communications, 2018, 9,<br>1722.                                                    | 12.8 | 18        |
| 13 | Valley Subband Splitting in Bilayer Graphene Quantum Point Contacts. Physical Review Letters, 2018, 121, 257703.                                               | 7.8  | 38        |
| 14 | Tuning Anti-Klein to Klein Tunneling in Bilayer Graphene. Physical Review Letters, 2018, 121, 127706.                                                          | 7.8  | 39        |
| 15 | Layout influence on microwave performance of graphene field effect transistors. Electronics Letters, 2018, 54, 984-986.                                        | 1.0  | 6         |
| 16 | High-quality Si_3N_4 circuits as a platform for graphene-based nanophotonic devices. Optics Express, 2013, 21, 31678.                                          | 3.4  | 45        |
| 17 | Graphene microwave transistors on sapphire substrates. Applied Physics Letters, 2011, 99, 113502.                                                              | 3.3  | 42        |
| 18 | Shot noise measurements in graphene. Solid State Communications, 2009, 149, 1050-1055.                                                                         | 1.9  | 19        |

Romain Danneau

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evanescent Wave Transport and Shot Noise inÂGraphene: Ballistic Regime and Effect of Disorder.<br>Journal of Low Temperature Physics, 2008, 153, 374-392.                    | 1.4 | 47        |
| 20 | 0.7 Structure and zero bias anomaly in one-dimensional hole systems. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1501-1503.                             | 2.7 | 0         |
| 21 | Screening long-range Coulomb interactions in 2D hole systems using a bilayer heterostructure.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1700-1702. | 2.7 | 1         |
| 22 | Shot Noise in Ballistic Graphene. Physical Review Letters, 2008, 100, 196802.                                                                                                | 7.8 | 214       |
| 23 | The 0.7 anomaly in one-dimensional hole quantum wires. Journal of Physics Condensed Matter, 2008, 20, 164205.                                                                | 1.8 | 10        |
| 24 | Quantum transport in one-dimensional GaAs hole systems. International Journal of Nanotechnology, 2008, 5, 318.                                                               | 0.2 | 1         |
| 25 | Ballistic transport in one-dimensional bilayer hole systems. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 34, 550-552.                                       | 2.7 | 2         |
| 26 | Sliding-Induced Decoupling and Charge Transfer between the CoexistingQ1andQ2Charge Density Waves inNbSe3. Physical Review Letters, 2004, 93, 106404.                         | 7.8 | 13        |
| 27 | Motional Ordering of a Charge-Density Wave in the Sliding State. Physical Review Letters, 2002, 89, 106404.                                                                  | 7.8 | 27        |
| 28 | Individual Domain Wall Resistance in Submicron Ferromagnetic Structures. Physical Review Letters, 2002, 88, 157201.                                                          | 7.8 | 89        |