Scott J Myers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5597021/publications.pdf

Version: 2024-02-01

567281 713466 4,237 21 15 21 citations h-index g-index papers 22 22 22 6132 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews, 2010, 62, 405-496.	16.0	2,973
2	Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nature Neuroscience, 1999, 2, 867-872.	14.8	360
3	Human GRIN2B variants in neurodevelopmental disorders. Journal of Pharmacological Sciences, 2016, 132, 115-121.	2.5	180
4	Antidepressant-relevant concentrations of the ketamine metabolite (2 $\langle i \rangle R \langle i \rangle$, 6 $\langle i \rangle R \langle i \rangle$) Tj ETQq0 0 0 rgBT /Ov Sciences of the United States of America, 2019, 116, 5160-5169.		Tf 50 627 To 120
5	GENETIC REGULATION OF GLUTAMATE RECEPTOR ION CHANNELS. Annual Review of Pharmacology and Toxicology, 1999, 39, 221-241.	9.4	98
6	Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Research, 2019, 8, 1940.	1.6	92
7	Context-Dependent GluN2B-Selective Inhibitors of NMDA Receptor Function Are Neuroprotective with Minimal Side Effects. Neuron, 2015, 85, 1305-1318.	8.1	57
8	Modelling and treating GRIN2A developmental and epileptic encephalopathy in mice. Brain, 2020, 143, 2039-2057.	7.6	51
9	Heterogeneous clinical and functional features of GRIN2D-related developmental and epileptic encephalopathy. Brain, 2019, 142, 3009-3027.	7.6	49
10	De novo <i>GRIN</i> variants in NMDA receptor M2 channel poreâ€forming loop are associated with neurological diseases. Human Mutation, 2019, 40, 2393-2413.	2.5	48
11	A Novel Negative Allosteric Modulator Selective for GluN2C/2D-Containing NMDA Receptors Inhibits Synaptic Transmission in Hippocampal Interneurons. ACS Chemical Neuroscience, 2018, 9, 306-319.	3.5	42
12	Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Nature Communications, 2019, 10, 321.	12.8	32
13	A novel missense mutation in <i>GRIN2A</i> causes a nonepileptic neurodevelopmental disorder. Movement Disorders, 2018, 33, 992-999.	3.9	26
14	Inhibition of Glutamate Receptor 2 Translation by a Polymorphic Repeat Sequence in the 5'-Untranslated Leaders. Journal of Neuroscience, 2004, 24, 3489-3499.	3.6	25
15	Hodgkin–Huxley–Katz Prize Lecture: Genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. Journal of Physiology, 2020, 598, 3071-3083.	2.9	23
16	Negative allosteric modulation of GluN1/GluN3 NMDA receptors. Neuropharmacology, 2020, 176, 108117.	4.1	17
17	Synthesis and Preliminary Evaluations of a Triazole-Cored Antagonist as a PET Imaging Probe ([¹⁸ F]N2B-0518) for GluN2B Subunit in the Brain. ACS Chemical Neuroscience, 2019, 10, 2263-2275.	3.5	13
18	The <scp><i>GRIA3</i></scp> c. <scp>2477G</scp> > A Variant Causes an Exaggerated Startle Reflex, Chorea, and Multifocal Myoclonus. Movement Disorders, 2020, 35, 1224-1232.	3.9	13

SCOTT J MYERS

#	Article	IF	CITATIONS
19	A GluN2B-selective inhibitor of NMDA receptor function with enhanced potency at acidic pH and oral bioavailability for clinical use. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, JPET-AR-2020-000370.	2.5	7
20	A de novo GRIN1 Variant Associated With Myoclonus and Developmental Delay: From Molecular Mechanism to Rescue Pharmacology. Frontiers in Genetics, 2021, 12, 694312.	2.3	6
21	Opportunities for Precision Treatment of <i>GRIN2A</i> and <i>GRIN2B</i> Gain-of-Function Variants in Triheteromeric N-Methyl-D-Aspartate Receptors. Journal of Pharmacology and Experimental Therapeutics, 2022, 381, 54-66.	2.5	5