Thomas Rckmann

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5596780/thomas-rockmann-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

281 8,629 80 49 h-index g-index citations papers 6.18 9,877 387 7.1 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
281	Street-level methane emissions of Bucharest, Romania and the dominance of urban wastewater <i>Atmospheric Environment: X</i> , 2022 , 13, 100153	2.8	1
280	Stable isotopic signatures of methane from waste sources through atmospheric measurements. <i>Atmospheric Environment</i> , 2022 , 276, 119021	5.3	0
279	Temperature dependence of isotopic fractionation in the CO - O isotope exchange reaction <i>Rapid Communications in Mass Spectrometry</i> , 2022 , e9301	2.2	
278	Presence of nanoplastics in rural and remote surface waters. <i>Environmental Research Letters</i> , 2022 , 17, 054036	6.2	3
277	Carbon Emissions From the Edge of the Greenland Ice Sheet Reveal Subglacial Processes of Methane and Carbon Dioxide Turnover. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126,	3.7	1
276	Stratospheric carbon isotope fractionation and tropospheric histories of CFC-11, CFC-12, and CFC-113 isotopologues. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 6857-6873	6.8	
275	Isotopic signatures of major methane sources in the coal seam gas fields and adjacent agricultural districts, Queensland, Australia. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 10527-10555	6.8	6
274	Carbon and Hydrogen Isotope Signatures of Dissolved Methane in the Scheldt Estuary. <i>Estuaries and Coasts</i> , 2021 , 44, 137-146	2.8	2
273	Aircraft-Based Observations of Ozone-Depleting Substances in the Upper Troposphere and Lower Stratosphere in and Above the Asian Summer Monsoon. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033137	4.4	8
272	Leaf scale quantification of the effect of photosynthetic gas exchange on lbf CO. <i>Scientific Reports</i> , 2021 , 11, 14023	4.9	
271	Methane (CH₄) sources in Krakow, Poland: insights from isotope analysis. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 13167-13185	6.8	6
270	Nanoplastics transport to the remote, high-altitude Alps. <i>Environmental Pollution</i> , 2021 , 288, 117697	9.3	10
269	A reassessment of the discrepancies in the annual variation of <i></i>D-H₂O in the tropical lower stratosphere between the MIPAS and ACE-FTS satellite data sets. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 287-308	4	1
268	Micro- and Nanoplastics in Alpine Snow: A New Method for Chemical Identification and (Semi)Quantification in the Nanogram Range. <i>Environmental Science & Environmental Scienc</i>	2 1 359	92
267	East Siberian Arctic inland waters emit mostly contemporary carbon. <i>Nature Communications</i> , 2020 , 11, 1627	17.4	22
266	Methane emissions from the Munich Oktoberfest. Atmospheric Chemistry and Physics, 2020, 20, 3683-36	5 96 8	10
265	Estimating CH₄, CO₂ and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 12675-12695	6.8	14

(2018-2020)

264	Wildfire smoke in the lower stratosphere identified by in situ CO observations. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13985-14003	6.8	5
263	Methane mapping, emission quantification, and attribution in two European cities: Utrecht (NL) and Hamburg (DE). <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 14717-14740	6.8	12
262	Investigating stratospheric changes between 2009 and 2018 with halogenated trace gas data from aircraft, AirCores, and a global model focusing on CFC-11. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 9771-9782	6.8	7
261	Leaf-scale quantification of the effect of photosynthetic gas exchange on ¹⁷O of atmospheric CO₂. <i>Biogeosciences</i> , 2020 , 17, 3903	- 3 922	2
260	CloudRoots: integration of advanced instrumental techniques and process modelling of sub-hourly and sub-kilometre landatmosphere interactions. <i>Biogeosciences</i> , 2020 , 17, 4375-4404	4.6	5
259	Characterisation of methane sources in Lutjewad, The Netherlands, using quasi-continuous isotopic composition measurements. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2020 , 72, 1-20	3.3	8
258	Influence of Atmospheric Transport on Estimates of Variability in the Global Methane Burden. <i>Geophysical Research Letters</i> , 2019 , 46, 2302-2311	4.9	10
257	Sub-diurnal variability of the carbon dioxide and water vapor isotopologues at the field observational scale. <i>Agricultural and Forest Meteorology</i> , 2019 , 275, 114-135	5.8	7
256	What caused the extreme CO concentrations during the 2017 high-pollution episode in India?. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 3433-3445	6.8	14
255	Measurement of O O and O O in atmospheric O using the 253 Ultra mass spectrometer and applications to stratospheric and tropospheric air samples. <i>Rapid Communications in Mass Spectrometry</i> , 2019 , 33, 981-994	2.2	8
254	Brief communication: Analysis of organic matter in surface snow by PTR-MS [Implications for dry deposition dynamics in the Alps. <i>Cryosphere</i> , 2019 , 13, 297-307	5.5	8
253	Compound-Specific Radiocarbon Analysis of Atmospheric Methane: A New Preconcentration and Purification Setup. <i>Radiocarbon</i> , 2019 , 61, 1461-1476	4.6	7
252	Global 3-D Simulations of the Triple Oxygen Isotope Signature D in Atmospheric CO. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 8808-8836	4.4	14
251	Determination of the triple oxygen and carbon isotopic composition of CO from atomic ion fragments formed in the ion source of the 253 Ultra high-resolution isotope ratio mass spectrometer. <i>Rapid Communications in Mass Spectrometry</i> , 2019 , 33, 1363-1380	2.2	17
250	Produß e Fluxo de Metano na Floresta Nacional do Tapajß. <i>Revista Brasileira De Meteorologia</i> , 2019 , 34, 585-596	0.4	
249	Explicit aerosollloud interactions in the Dutch Atmospheric Large-Eddy Simulation model DALES4.1-M7. <i>Geoscientific Model Development</i> , 2019 , 12, 5177-5196	6.3	3
248	H clumped isotope measurements at natural isotopic abundances. <i>Rapid Communications in Mass Spectrometry</i> , 2019 , 33, 239-251	2.2	10
247	Continued increase of CFC-113a (CCl₃CF₃) mixing ratios in the global atmosphere: emissions, occurrence and potential sources. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 4737-4751	6.8	14

246	Methane Feedbacks to the Global Climate System in a Warmer World. <i>Reviews of Geophysics</i> , 2018 , 56, 207-250	23.1	200
245	The isotopic composition of CO in vehicle exhaust. <i>Atmospheric Environment</i> , 2018 , 177, 132-142	5.3	8
244	Evaluation of stratospheric age of air from CF ₄ , C ₂ F ₆ , C ₃ F ₈ , CHF ₃ , HFC-125, HFC-227ea and SF ₆ ; implications for the calculations of halocarbon	6.8	14
243	Sources and atmospheric processing of size segregated aerosol particles revealed by stable carbon isotope ratios and chemical speciation. <i>Environmental Pollution</i> , 2018 , 240, 286-296	9.3	16
242	The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0. <i>Geoscientific Model Development</i> , 2018 , 11, 1443-1465	6.3	9
241	What caused the extreme CO concentrations during the 2017 high pollution episode in India? 2018,		1
240	Changes in the Isotopic Signature of Atmospheric Nitrous Oxide and Its Global Average Source During the Last Three Millennia. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 10,757	4.4	9
239	Interlaboratory comparison of <i></i>¹³C and <i></i>D measurements of atmospheric CH₄ for combined use of data sets from different laboratories. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 1207-1231	4	24
238	Iron oxide reduction in methane-rich deep Baltic Sea sediments. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 207, 256-276	5.5	63
237	Enhanced methane emissions from tropical wetlands during the 2011 La Ni A. Scientific Reports, 2017 , 7, 45759	4.9	33
236	Quantification of the SF6 lifetime based on mesospheric loss measured in the stratospheric polar vortex. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 4626-4638	4.4	54
235	The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. <i>Biogeosciences</i> , 2017 , 14, 2283-2292	4.6	32
234	Characteristics, sources and evolution of fine aerosol (PM 1) at urban, coastal and forest background sites in Lithuania. <i>Atmospheric Environment</i> , 2017 , 148, 62-76	5.3	19
233	Characterisation of the semi-volatile component of Dissolved Organic Matter by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry. <i>Scientific Reports</i> , 2017 , 7, 15936	4.9	14
232	Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. <i>Nature Communications</i> , 2017 , 8, 2227	17.4	97
231	Sources and formation mechanisms of carbonaceous aerosol at a regional background site in the Netherlands: insights from a year-long radiocarbon study. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 3233-3251	6.8	27
230	Chemical and isotopic composition of secondary organic aerosol generated by <i>Alt;/i>-pinene ozonolysis. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 6373-6391	6.8	10
229	Quantification of CO emissions from the city of Madrid using MOPITT satellite retrievals and WRF simulations. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 14675-14694	6.8	11

228	Constraining N₂O emissions since 1940 using firn air isotope measurements in both hemispheres. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4539-4564	6.8	6
227	Retrievals of heavy ozone with MIPAS. Atmospheric Measurement Techniques, 2016, 9, 6069-6079	4	4
226	Can we explain the observed methane variability after the Mount Pinatubo eruption?. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 195-214	6.8	11
225	Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: Synthetic study based on a large eddy simulation. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 12,914-12,935	4.4	13
224	In situ observations of the isotopic composition of methane at the Cabauw tall tower site. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 10469-10487	6.8	49
223	Chemical characterization of organic particulate matter from on-road traffic in SB Paulo, Brazil. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 14397-14408	6.8	11
222	Inverse modeling of GOSAT-retrieved ratios of total column CH₄ and CO₂ for 2009 and 2010. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 5043-5062	6.8	23
221	Influence of 3D effects on 1D aerosol retrievals in synthetic, partially clouded scenes. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2016 , 170, 54-68	2.1	11
220	Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments. <i>PLoS ONE</i> , 2016 , 11, e0161609	3.7	41
219	Stratospheric Air Sub-sampler (SAS) and its application to analysis of ¹⁷O(CO₂) from small air samples collected with an AirCore. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 5607-5620	4	10
218	In-situ observations of the isotopic composition of methane at the Cabauw tall tower site 2016,		2
217	Real-time analysis of <i></i>¹³C- and <i></i>D-CH₄ in ambient air with laser spectroscopy: method development and first intercomparison results. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 263-280	4	34
216	Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean. <i>Biogeosciences</i> , 2016 , 13, 323-340	4.6	7
215	Development and evaluation of a suite of isotope reference gases for methane in air. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 3717-3737	4	20
214	Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea. <i>Biogeosciences</i> , 2016 , 13, 5333-5355	4.6	49
213	Chemical and isotopic composition of secondary organic aerosol generated by <i>-pinene ozonolysis 2016 ,		2
212	Statistical clumped isotope signatures. <i>Scientific Reports</i> , 2016 , 6, 31947	4.9	22
211	Observations of molecular hydrogen mixing ratio and stable isotopic composition at the Cabauw tall tower in the Netherlands. <i>Atmospheric Environment</i> , 2016 , 147, 98-108	5.3	2

210	Impact of a future H 2 transportation on atmospheric pollution in Europe. <i>Atmospheric Environment</i> , 2015 , 113, 208-222	5.3	18
209	Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 1287-1301	4	23
208	Global-scale remote sensing of water isotopologues in the troposphere: representation of first-order isotope effects. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 999-1019	4	10
207	Continuous-flow IRMS technique for determining the ¹⁷O excess of CO₂ using complete oxygen isotope exchange with cerium oxide. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 811-822	4	5
206	Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition. <i>Soil Biology and Biochemistry</i> , 2015 , 85, 1-9	7.5	36
205	Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. <i>Environmental Science & Environmental Science</i> & Environmental Science &	10.3	181
204	Offline thermal-desorption proton-transfer-reaction mass spectrometry to study composition of organic aerosol. <i>Journal of Aerosol Science</i> , 2015 , 79, 1-14	4.3	16
203	Experimental study on isotope fractionation effects in visible photolysis of O3 and in the O + O3 odd oxygen sink reaction. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 4398-4416	4.4	7
202	Carbon isotope ratios suggest no additional methane from boreal wetlands during the rapid Greenland Interstadial 21.2. <i>Global Biogeochemical Cycles</i> , 2015 , 29, 1962-1976	5.9	9
201	Wavelength-dependent isotope fractionation in visible light O3 photolysis and atmospheric implications. <i>Geophysical Research Letters</i> , 2015 , 42, 8711-8718	4.9	6
200	Studying the spatial variability of methane flux with five eddy covariance towers of varying height. <i>Agricultural and Forest Meteorology</i> , 2015 , 214-215, 456-472	5.8	19
199	Atmospheric processes governing the changes in water isotopologues during ENSO events from model and satellite measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 6712-67	2 9 4	11
198	Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6867-6877	6.8	5
197	On the use of satellite-derived CH₄ : CO₂ columns in a joint inversion of CH₄ and CO₂ fluxes. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8615-8629	6.8	10
196	Isotopic signatures of production and uptake of H₂ by soil. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 13003-13021	6.8	9
195	An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 5315-5324	4	6
194	The effect of stratospheric sulfur from Mount Pinatubo on tropospheric oxidizing capacity and methane. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 1202-1220	4.4	14
193	An analytical system for studying the stable isotopes of carbon monoxide using continuous flow-isotope ratio mass spectrometry (CF-IRMS) 2015 ,		2

192	Newly detected ozone-depleting substances in the atmosphere. <i>Nature Geoscience</i> , 2014 , 7, 266-269	18.3	61
191	Reconstruction of Northern Hemisphere 1950\(\bar{L}\)010 atmospheric non-methane hydrocarbons. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1463-1483	6.8	25
190	A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 3991-4012	6.8	84
189	Estimation of aerosol water and chemical composition from AERONET Sunlky radiometer measurements at Cabauw, the Netherlands. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5969-5987	6.8	25
188	Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO: CO ₂ , N ₂ 2, CH ₄ : CO ₂ :	6.8	49
187	HESS Opinions "A perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation". <i>Hydrology and Earth System Sciences</i> , 2014 , 18, 2815-2827	5.5	68
186	Atmospheric Abundances, Trends and Emissions of CFC-216ba, CFC-216ca and HCFC-225ca. <i>Atmosphere</i> , 2014 , 5, 420-434	2.7	8
185	Methane emissions from floodplains in the Amazon Basin: challenges in developing a process-based model for global applications. <i>Biogeosciences</i> , 2014 , 11, 1519-1558	4.6	35
184	Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment. <i>Biogeosciences</i> , 2014 , 11, 3163-3186	4.6	33
183	Evaluation of a two-step thermal method for separating organic and elemental carbon for radiocarbon analysis. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 1943-1955	4	19
.0-			
182	Global scale remote sensing of water isotopologues in the troposphere: representation of first-order isotope effects 2014 ,		2
181		5-3	26
	first-order isotope effects 2014 , The contribution of fossil sources to the organic aerosol in the Netherlands. <i>Atmospheric</i>	5·3 50·4	
181	first-order isotope effects 2014 , The contribution of fossil sources to the organic aerosol in the Netherlands. <i>Atmospheric Environment</i> , 2013 , 74, 169-176	50.4	26
181	first-order isotope effects 2014, The contribution of fossil sources to the organic aerosol in the Netherlands. <i>Atmospheric Environment</i> , 2013, 74, 169-176 Eemian interglacial reconstructed from a Greenland folded ice core. <i>Nature</i> , 2013, 493, 489-94 On the interference of Kr during carbon isotope analysis of methane using continuous-flow	50.4	26 474
181 180 179	first-order isotope effects 2014, The contribution of fossil sources to the organic aerosol in the Netherlands. <i>Atmospheric Environment</i> , 2013, 74, 169-176 Eemian interglacial reconstructed from a Greenland folded ice core. <i>Nature</i> , 2013, 493, 489-94 On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion botope ratio mass spectrometry. <i>Atmospheric Measurement Techniques</i> , 2013, 6, 1425-1445 Source contributions to PM2.5 and PM10 at an urban background and a street location.	50.4	26 474 24
181 180 179 178	first-order isotope effects 2014, The contribution of fossil sources to the organic aerosol in the Netherlands. <i>Atmospheric Environment</i> , 2013, 74, 169-176 Eemian interglacial reconstructed from a Greenland folded ice core. <i>Nature</i> , 2013, 493, 489-94 On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion botope ratio mass spectrometry. <i>Atmospheric Measurement Techniques</i> , 2013, 6, 1425-1445 Source contributions to PM2.5 and PM10 at an urban background and a street location. <i>Atmospheric Environment</i> , 2013, 71, 26-35 A thermal desorption system for measuring 13C ratios on organic aerosol. <i>Journal of Aerosol</i>	50.4	26 474 24 84

174	Analysis of global methane changes after the 1991 Pinatubo volcanic eruption. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 2267-2281	6.8	16
173	Observation-based assessment of stratospheric fractional release, lifetimes, and ozone depletion potentials of ten important source gases. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 2779-2791	6.8	39
172	Extreme ¹³C depletion of CCl₂2</sub>2</sub>6. Greenland. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 599-609	6.8	8
171	Can the carbon isotopic composition of methane be reconstructed from multi-site firn air measurements?. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 6993-7005	6.8	18
170	Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 9233-9268	6.8	69
169	Reassessing the variability in atmospheric H2 using the two-way nested TM5 model. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 3764-3780	4.4	18
168	Comparison of CH4 inversions based on 15 months of GOSAT and SCIAMACHY observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,807-11,823	4.4	54
167	An automated GC-C-GC-IRMS setup to measure palaeoatmospheric ¹³ C-CH ₄ , ¹⁵ N-N ₂ O and	4	14
166	High-resolution measurements of atmospheric molecular hydrogen and its isotopic composition at the West African coast of Mauritania. <i>Biogeosciences</i> , 2013 , 10, 3391-3403	4.6	3
165	Iconic CO2 time series at risk. <i>Science</i> , 2012 , 337, 1038-40	33.3	13
165 164	Iconic CO2 time series at risk. <i>Science</i> , 2012 , 337, 1038-40 Natural and anthropogenic variations in methane sources during the past two millennia. <i>Nature</i> , 2012 , 490, 85-8	33·3 50·4	
	Natural and anthropogenic variations in methane sources during the past two millennia. <i>Nature</i> ,		96
164	Natural and anthropogenic variations in methane sources during the past two millennia. <i>Nature</i> , 2012 , 490, 85-8 Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere.	50.4	96
164	Natural and anthropogenic variations in methane sources during the past two millennia. <i>Nature</i> , 2012 , 490, 85-8 Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. <i>Nature</i> , 2012 , 486, 93-6 Comparing optimized CO emission estimates using MOPITT or NOAA surface network	50.4	96 57
164 163 162	Natural and anthropogenic variations in methane sources during the past two millennia. <i>Nature</i> , 2012 , 490, 85-8 Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. <i>Nature</i> , 2012 , 486, 93-6 Comparing optimized CO emission estimates using MOPITT or NOAA surface network observations. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a Methane airborne measurements and comparison to global models during BARCA. <i>Journal of</i>	50.4	96 57 35
164163162161	Natural and anthropogenic variations in methane sources during the past two millennia. <i>Nature</i> , 2012 , 490, 85-8 Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. <i>Nature</i> , 2012 , 486, 93-6 Comparing optimized CO emission estimates using MOPITT or NOAA surface network observations. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a Methane airborne measurements and comparison to global models during BARCA. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a Interannual variability of carbon monoxide emission estimates over South America from 2006 to	50.4	96573545
164163162161160	Natural and anthropogenic variations in methane sources during the past two millennia. <i>Nature</i> , 2012 , 490, 85-8 Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. <i>Nature</i> , 2012 , 486, 93-6 Comparing optimized CO emission estimates using MOPITT or NOAA surface network observations. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a Methane airborne measurements and comparison to global models during BARCA. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a Interannual variability of carbon monoxide emission estimates over South America from 2006 to 2010. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a	50.4	9657354525

(2011-2012)

-	156	Long-term tropospheric trend of octafluorocyclobutane (c-C₄F₈ or PFC-318). <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 261-269	6.8	37
	155	Stable carbon isotope fractionation in the UV photolysis of CFC-11 and CFC-12. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 4379-4385	6.8	6
·	154	Molecular hydrogen (H₂) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 6275-6289	6.8	9
	153	The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 4633-4646	6.8	9
	152	Comparison of an isotopic atmospheric general circulation model with new quasi-global satellite measurements of water vapor isotopologues. <i>Journal of Geophysical Research</i> , 2011 , 116,		57
	151	Temporal and spatial variability of the stable isotopic composition of atmospheric molecular hydrogen: observations at six EUROHYDROS stations. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 6985	68 6999	17
	150	Methane flux, vertical gradient and mixing ratio measurements in a tropical forest. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7943-7953	6.8	30
:	149	Interpreting methane variations in the past two decades using measurements of CH₄ mixing ratio and isotopic composition. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 9141-9153	6.8	83
·	148	The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 13287-13304	6.8	36
:	147	H₂ vertical profiles in the continental boundary layer: measurements at the Cabauw tall tower in The Netherlands. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 6425-6443	6.8	14
	146	Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 4705-4723	6.8	46
	145	Global modelling of H₂ mixing ratios and isotopic compositions with the TM5 model. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7001-7026	6.8	22
	144	Impact of ammonium nitrate chemistry on the AOT in Cabauw, the Netherlands. <i>Atmospheric Environment</i> , 2011 , 45, 5640-5646	5.3	10
:	143	Methyl chloride and C2\$\textstyle{\mathbb{U}}\$5 hydrocarbon emissions from dry leaf litter and their dependence on temperature. <i>Atmospheric Environment</i> , 2011 , 45, 3112-3119	5.3	27
	142	Emissions of H2 and CO from leaf litter of Sequoiadendron giganteum, and their dependence on UV radiation and temperature. <i>Atmospheric Environment</i> , 2011 , 45, 7520-7524	5.3	23
	141	Comparison of HDO measurements from Envisat/MIPAS with observations by Odin/SMR and SCISAT/ACE-FTS. <i>Atmospheric Measurement Techniques</i> , 2011 , 4, 1855-1874	4	22
	140	Analytical system for stable carbon isotope measurements of low molecular weight (C₂-C₆) hydrocarbons. <i>Atmospheric Measurement Techniques</i> , 2011 , 4, 1161-1175	4	9
	139	Simultaneous stable isotope analysis of methane and nitrous oxide on ice core samples. Atmospheric Measurement Techniques, 2011 , 4, 2607-2618	4	35

138	Analytical system for carbon stable isotope measurements of light non-methane hydrocarbons 2011 ,		1
137	UV-induced emissions of C2 - C5 hydrocarbons from leaf litter. <i>Environmental Chemistry</i> , 2011 , 8, 602	3.2	13
136	Tropical dehydration processes constrained by the seasonality of stratospheric deuterated water. <i>Nature Geoscience</i> , 2010 , 3, 262-266	18.3	44
135	Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane 2010 ,		3
134	Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane. <i>Atmospheric Measurement Techniques</i> , 2010 , 3, 1707-1721	4	51
133	Isotopic composition of H2 from wood burning: Dependency on combustion efficiency, moisture content, and D of local precipitation. <i>Journal of Geophysical Research</i> , 2010 , 115,		17
132	Water drives the deuterium content of the methane emitted from plants. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 3865-3873	5.5	15
131	Isotope effect in the formation of H₂ from H₂CO studied at the atmospheric simulation chamber SAPHIR. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5343-5357	6.8	15
130	Molecular hydrogen (H₂) emissions and their isotopic signatures (H/D) from a motor vehicle: implications on atmospheric H₂. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5707-5718	6.8	23
129	Analysis of the chemical composition of organic aerosol at the Mt. Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-TD-PTR-MS). <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 10111-10128	6.8	71
128	Fractional release factors of long-lived halogenated organic compounds in the tropical stratosphere. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 1093-1103	6.8	19
127	An introduction to the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: rationale and roadmap. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2237-2256	6.8	51
126	Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2257-2267	6.8	77
125	Corrigendum to "Fractional release factors of long-lived halogenated organic compounds in the tropical stratosphere" published in Atmos. Chem. Phys., 10, 1093¶103, 2010. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 4975-4975	6.8	1
124	Accelerating growth of HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane) in the atmosphere. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5903-5910	6.8	47
123	Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground. <i>Science</i> , 2009 , 325, 1374-7	33.3	166
122	The stable isotope signature of methane emitted from plant material under UV irradiation. <i>Atmospheric Environment</i> , 2009 , 43, 5637-5646	5.3	55
121	CO2 isotope analyses using large air samples collected on intercontinental flights by the CARIBIC Boeing 767. <i>Rapid Communications in Mass Spectrometry</i> , 2009 , 23, 822-30	2.2	7

120	Methane formation in aerobic environments. Environmental Chemistry, 2009, 6, 459	3.2	83
119	A consistent molecular hydrogen isotope chemistry scheme based on an independent bond approximation. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 8503-8529	6.8	26
118	Influence of entrainment of CCN on microphysical properties of warm cumulus. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 6005-6015	6.8	10
117	Eddy covariance methane measurements at a Ponderosa pine plantation in California. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 8365-8375	6.8	54
116	Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. <i>New Phytologist</i> , 2008 , 178, 808-814	9.8	135
115	Early anthropogenic CH4 emissions and the variation of CH4 and 13CH4 over the last millennium. <i>Global Biogeochemical Cycles</i> , 2008 , 22, n/a-n/a	5.9	36
114	Four-dimensional variational data assimilation for inverse modeling of atmospheric methane emissions: Analysis of SCIAMACHY observations. <i>Journal of Geophysical Research</i> , 2008 , 113,		75
113	Overview of Research and Networking with Ground based Remote Sensing for Atmospheric Profiling at the Cabauw Experimental Site for Atmospheric Research (CESAR) - The Netherlands 2008 ,		10
112	What can ¹⁴CO measurements tell us about OH?. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 5033-5044	6.8	36
111	Hydrogen isotope fractionation in the photolysis of formaldehyde. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 1353-1366	6.8	26
110	Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. <i>Biogeosciences</i> , 2008 , 5, 937-947	4.6	124
109	Correction of mass spectrometric isotope ratio measurements for isobaric isotopologues of O2, CO, CO2, N2O and SO2. <i>Rapid Communications in Mass Spectrometry</i> , 2008 , 22, 3997-4008	2.2	22
108	Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. <i>Analytical Chemistry</i> , 2007 , 79, 599-607	7.8	174
107	Relative tropospheric photolysis rates of HCHO and HCDO measured at the European Photoreactor Facility. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 9034-46	2.8	35
106	Stratospheric ozone isotope fractionations derived from collected samples. <i>Journal of Geophysical Research</i> , 2007 , 112,		44
105	Methane, Plants and Climate Change. <i>Scientific American</i> , 2007 , 296, 52-57	0.5	13
104	Atmospheric CO along the Trans-Siberian Railroad and River Ob: source identification using isotope analysis. <i>Journal of Atmospheric Chemistry</i> , 2007 , 57, 135-152	3.2	13
103	HDO measurements with MIPAS. Atmospheric Chemistry and Physics, 2007, 7, 2601-2615	6.8	52

102	Investigations of the photochemical isotope equilibrium between O₂, CO₂ and O₃. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 495-509	6.8	21
101	A general algorithm for the 17O abundance correction to 13C/12C determinations from CO2 isotopologue measurements, including CO2 characterised by hass-independent bxygen isotope distributions. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 3145-3161	5.5	8
100	Atmospheric CH4 along the Trans-Siberian railroad (TROICA) and river Ob: Source identification using stable isotope analysis. <i>Atmospheric Environment</i> , 2006 , 40, 5617-5628	5.3	37
99	Atmospheric constraints on global emissions of methane from plants. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	88
98	Probing stratospheric transport and chemistry with new balloon and aircraft observations of the meridional and vertical N₂O isotope distribution. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 3535-3556	6.8	54
97	The overwhelming role of soils in the global atmospheric hydrogen cycle. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 1611-1625	6.8	98
96	Modelling the budget of middle atmospheric water vapour isotopes. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 2073-2090	6.8	61
95	Constraints on N₂O budget changes since pre-industrial time from new firn air and ice core isotope measurements. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 493-503	6.8	39
94	Methane emissions from terrestrial plants under aerobic conditions. <i>Nature</i> , 2006 , 439, 187-91	50.4	690
93	Comment on Evidence for O-atom exchange in the O(1D) + N2O reaction as the source of mass-independent isotopic fractionation in atmospheric N2Oby Y. L. Yung et al <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	3
92	Absence of isotope exchange in the reaction of N2O + O(1D) and the global 17O budget of nitrous oxide. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	18
91	High-precision determination of the changing isotopic composition of atmospheric N2O from 1990 to 2002. <i>Journal of Geophysical Research</i> , 2005 , 110,		39
90	New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 2403-2411	6.8	108
89	High-precision isotope measurements of H ₂ ¹⁶ O, H ₂ ¹⁷ O, H ₂ ¹⁸ O, and the []	6.8	35
88	Mass spectrometric method for the absolute calibration of the intramolecular nitrogen isotope distribution in nitrous oxide. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 378, 256-69	4.4	26
87	Continuous-flow isotope analysis of the deuterium/hydrogen ratio in atmospheric hydrogen. <i>Rapid Communications in Mass Spectrometry</i> , 2004 , 18, 299-306	2.2	42
86	A new continuous flow isotope ratio mass spectrometry system for the analysis of delta2H, delta17O and delta18O of small (120 microg) water samples in atmospheric applications. <i>Rapid Communications in Mass Spectrometry</i> , 2004 , 18, 1429-35	2.2	12
85	Influence of flooding on delta15N, delta18O, 1delta15N and 2delta15N signatures of N2O released from estuarine soilsa laboratory experiment using tidal flooding chambers. <i>Rapid Communications in Mass Spectrometry</i> , 2004 , 18, 1561-8	2.2	22

(2001-2004)

84	Contribution of mass-dependent fractionation to the oxygen isotope anomaly of atmospheric nitrous oxide. <i>Journal of Geophysical Research</i> , 2004 , 109, n/a-n/a		39
83	Ultra-violet absorption cross sections of isotopically substituted nitrous oxide species: ¹⁴ N ¹⁴ NO, ¹⁵ N ¹⁴ NO,	6.8	32
82	The impact of anthropogenic chlorine emissions, stratospheric ozone change and chemical feedbacks on stratospheric water. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 693-699	6.8	24
81	Use of Isotopes. Advances in Global Change Research, 2004, 361-426	1.2	
80	Heavy hydrogen in the stratosphere. Atmospheric Chemistry and Physics, 2003, 3, 2015-2023	6.8	51
79	Wavelength dependence of isotope fractionation in N₂O photolysis. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 303-313	6.8	43
78	The isotopic fingerprint of the pre-industrial and the anthropogenic N₂O source. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 315-323	6.8	80
77	Gas chromatography/isotope-ratio mass spectrometry method for high-precision position-dependent 15N and 18O measurements of atmospheric nitrous oxide. <i>Rapid Communications in Mass Spectrometry</i> , 2003 , 17, 1897-908	2.2	70
76	Assessment of 15N15N16O as a tracer of stratospheric processes. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	9
<i>75</i>	Complete and accurate mass spectrometric isotope analysis of tropospheric nitrous oxide. <i>Journal of Geophysical Research</i> , 2003 , 108,		67
74	Isotope effects in the chemistry of atmospheric trace compounds. <i>Chemical Reviews</i> , 2003 , 103, 5125-6	52 68.1	162
73	Characterization of pollution events observed at Schauinsland, Germany, using CO and its stable isotopes. <i>Atmospheric Environment</i> , 2002 , 36, 2831-2840	5.3	16
73 72			16
	using ¹⁴ C, ¹³ C, ¹⁸ O and ¹⁷ O isotopic variations to provide insights into the high northern latitude	5.3	
72	isotopes. Atmospheric Environment, 2002, 36, 2831-2840 Using ¹⁴ C, ¹³ C, ¹⁸ O and ¹⁷ O isotopic variations to provide insights into the high northern latitude surface CO inventory. Atmospheric Chemistry and Physics, 2002, 2, 147-159 Intramolecular 15N and 18O fractionation in the reaction of N2O with O(1D) and its implications for	5.3	44
72 71	Using ¹⁴C, ¹³C, ¹⁸O and ¹⁷O isotopic variations to provide insights into the high northern latitude surface CO inventory. <i>Atmospheric Chemistry and Physics</i> , 2002 , 2, 147-159 Intramolecular 15N and 18O fractionation in the reaction of N2O with O(1D) and its implications for the stratospheric N2O isotope signature. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 16-1 Temperature dependence of isotope fractionation in N2O photolysis. <i>Physical Chemistry Chemical</i>	5·3 6.8	44
7 ² 71 7°	Using ¹⁴C, ¹³C, ¹⁸O and ¹⁷O isotopic variations to provide insights into the high northern latitude surface CO inventory. <i>Atmospheric Chemistry and Physics</i> , 2002 , 2, 147-159 Intramolecular 15N and 18O fractionation in the reaction of N2O with O(1D) and its implications for the stratospheric N2O isotope signature. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 16-1 Temperature dependence of isotope fractionation in N2O photolysis. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 4420-4430 Oxygen isotope composition of stratospheric carbon dioxide. <i>Geophysical Research Letters</i> , 2002 ,	5·3 6.8 3.6	44 43 23

66	Absolute measurement of the abundance of atmospheric carbon monoxide. <i>Journal of Geophysical Research</i> , 2001 , 106, 10003-10010		22
65	Detailed analysis of the isotopic composition of CO and characterization of the air masses arriving at Mount Sonnblick (Austrian Alps). <i>Journal of Geophysical Research</i> , 2001 , 106, 3179-3193		16
64	Isotopic enrichment of nitrous oxide (15N14NO, 14N15NO, 14N14N18O) in the stratosphere and in the laboratory. <i>Journal of Geophysical Research</i> , 2001 , 106, 10403-10410		56
63	A detailed 2-year record of atmospheric 14CO in the temperate northern hemisphere. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2000 , 161-163, 780-785	1.2	10
62	Methodological aspects of atmospheric 14CO measurements with AMS. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2000 , 172, 530-536	1.2	14
61	CO2+O(1 D) isotopic exchange: Laboratory and modeling studies. <i>Journal of Geophysical Research</i> , 2000 , 105, 15213-15229		24
60	Measurement of the isotopic fractionation of 15N14N16O, 14N15N16O and 14N14N18O in the UV photolysis of nitrous oxide. <i>Geophysical Research Letters</i> , 2000 , 27, 1399-1402	4.9	42
59	Observed and modeled seasonal variation of 13C, 18O, and 14C of atmospheric CO at Happo, a remote site in Japan, and a comparison with other records. <i>Journal of Geophysical Research</i> , 2000 , 105, 8891-8900		17
58	Stable isotopic compositions of carbon monoxide from biomass burning experiments. <i>Atmospheric Environment</i> , 1999 , 33, 4357-4362	5.3	25
57	Review of progress in isotope studies of atmospheric carbon monoxide. <i>Chemosphere</i> , 1999 , 1, 33-52		38
56	CO mixing and isotope ratios across Russia; trans-Siberian railroad expedition TROICA 3, April 1997. <i>Chemosphere</i> , 1999 , 1, 219-231		9
55	Mass spectrometry of the intramolecular nitrogen isotope distribution of environmental nitrous oxide using fragment-ion analysis. <i>Rapid Communications in Mass Spectrometry</i> , 1999 , 13, 2028-33	2.2	86
54	Short-term variations in the 13C/12C ratio of CO as a measure of Cl activation during tropospheric ozone depletion events in the Arctic. <i>Journal of Geophysical Research</i> , 1999 , 104, 1691-1697		19
53	Measurements of stable carbon and oxygen isotopic compositions of CO in automobile exhausts and ambient air from semi-urban Mainz, Germany <i>Geochemical Journal</i> , 1999 , 33, 73-77	0.9	23
52	Trace Gas Measurements Between Moscow and Vladivostok Using the Trans-Siberian Railroad. Journal of Atmospheric Chemistry, 1998 , 29, 179-194	3.2	41
51	A rapid method for the preparation of O2 from CO2 for mass spectrometric measurement of 17O/16O ratios 1998 , 12, 479-483		34
50	Ozonolysis of nonmethane hydrocarbons as a source of the observed mass independent oxygen isotope enrichment in tropospheric CO. <i>Journal of Geophysical Research</i> , 1998 , 103, 1463-1470		27
49	Isotope analysis based source identification for atmospheric CH4 and CO sampled across Russia using the Trans-Siberian railroad. <i>Journal of Geophysical Research</i> , 1998 , 103, 8227-8235		71

48	The error in conventionally reported 13C/12C ratios of atmospheric CO due to the presence of mass independent oxygen isotope enrichment. <i>Geophysical Research Letters</i> , 1998 , 25, 3163-3166	4.9	14
47	Mass-independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO + OH. <i>Science</i> , 1998 , 281, 544-6	33.3	116
46	Principal factors determining the 18O/16O ratio of atmospheric CO as derived from observations in the southern hemispheric troposphere and lowermost stratosphere. <i>Journal of Geophysical Research</i> , 1997 , 102, 25477-25485		45
45	CO and CO2 isotopic composition in Spitsbergen during the 1995 ARCTOC campaign. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 1997 , 49, 455-465	3.3	8
44	. Tellus, Series B: Chemical and Physical Meteorology, 1997 , 49, 455-465	3.3	7
43	Russian doll type cryogenic traps: improved design and isotope separation effects. <i>Analytical Chemistry</i> , 1996 , 68, 3050-3	7.8	33
42	Analysis of the chemical composition of organic aerosol at the Mt. Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-TD-PTR	-MS)	2
41	Molecular hydrogen (H ₂) emissions and their isotopic signatures (H/D) from a motor vehicle: implications on atmospheric H ₂		2
40	Temporal and spatial variability of the stable isotopic composition of atmospheric molecular hydrogen: observations at six EUROHYDROS stations		4
39	The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements		1
38	Long-term tropospheric trend of octafluorocyclobutane (c-C ₄ F ₈ or PFC-318)		1
37	Optimizing global CO emissions using a four-dimensional variational data assimilation system and surface network observations		2
36	H ₂ vertical profiles in the continental boundary layer: measurements at the Cabauw tall tower in the Netherlands		1
35	Global modelling of H ₂ mixing ratios and isotopic compositions with the TM5 model		5
34	Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions		6
33	Reconstruction of the carbon isotopic composition of methane over the last 50 yr based on firn air measurements at 11 polar sites		6
32	Reconstruction of Northern Hemisphere 1950\(\textit{D}\)010 atmospheric non-methane hydrocarbons		2
31	Estimation of aerosol water and chemical composition from AERONET at Cabauw, the Netherlands		2

A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements 30 Development of an atmospheric N<sub>2</sub>O isotopocule model and optimization 29 procedure, and application to source estimation Isotopic signatures of production and uptake of H<sub>2</sub> by soil 28 1 Vehicular emissions of organic particulate matter in Sao Paulo, Brazil 27 26 Wavelength dependence of isotope fractionation in N<sub&qt;2</sub&qt;O photolysis 3 The isotopic fingerprint of the pre-industrial and the anthropogenic N<sub>2</sub>O source 25 Constraints on N<sub>2</sub>O budget changes since pre-industrial time from new firm 24 2 air and ice core isotope measurements Hydrogen isotope fractionation in the photolysis of formaldehyde An overview of the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West 22 4 Africa, August 2006: rationale, roadmap and highlights Fractional release factors of long-lived halogenated organic compounds in the tropical stratosphere 21 2 Isotope effect in the formation of H<sub>2</sub> from H<sub>2</sub>CO 20 1 studied at the atmospheric simulation chamber SAPHIR Eddy covariance methane measurements at a Ponderosa pine plantation in California 19 18 A consistent molecular hydrogen isotope chemistry scheme based on an independent bond approximation 2 Sensitivity of PARASOL multi-angle photo-polarimetric aerosol retrievals to cloud contamination 17 2 Evaluation of a 2-step thermal method for separating organic and elemental carbon for 16 3 radiocarbon analysis Real-time analysis of <sup&qt;13</sup&qt;C- and D-CH<sub&qt;4</sub&qt; in ambient 15 air with laser spectroscopy: method development and first intercomparison results The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis 14 3 Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea 2 13

LIST OF PUBLICATIONS

12	Methane emissions from floodplains in the Amazon Basin: towards a process-based model for global applications	1
11	Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment	4
10	Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components	30
9	The stable isotopic signature of biologically produced molecular hydrogen (H ₂)	2
8	HESS Opinions: A perspective on different approaches to determine the contribution of transpiration to the surface moisture fluxes	4
7	ROMEO - ROmanian Methane Emissions from Oil and Gas	2
6	Estimating CH ₄ , CO ₂ , and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach	2
5	Observation-based assessment of stratospheric fractional release, lifetimes, and Ozone Depletion Potentials of ten important source gases	2
4	Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO: CO ₂ , N ₂ 2, CH ₄ : CO ₂ CO	1
3	CO ₂ ratios, and the stable isotopes ¹³ C and A GC-IRMS method for measuring sulfur isotope ratios of carbonyl sulfide from small air samples. Open Research Europe,1, 105	1
2	In Situ Trace Gas Measurements77-155	4
1	A GC-IRMS method for measuring sulfur isotope ratios of carbonyl sulfide from small air samples. Open Research Europe,1, 105	O