
Andrea Gaiardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5596656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors. Sensors, 2016, 16, 296.	3.8	76
2	ZnO and Au/ZnO thin films: Room-temperature chemoresistive properties for gas sensing applications. Sensors and Actuators B: Chemical, 2016, 237, 1085-1094.	7.8	54
3	Tin(IV) sulfide nanorods as a new gas sensing material. Sensors and Actuators B: Chemical, 2016, 223, 827-833.	7.8	51
4	Electrical conductivity of CdS films for gas sensing: Selectivity properties to alcoholic chains. Sensors and Actuators B: Chemical, 2015, 207, 504-510.	7.8	42
5	Chemoresistive properties of photo-activated thin and thick ZnO films. Sensors and Actuators B: Chemical, 2016, 222, 1251-1256.	7.8	40
6	Development of MEMS MOS gas sensors with CMOS compatible PECVD inter-metal passivation. Sensors and Actuators B: Chemical, 2019, 292, 225-232.	7.8	31
7	Air Stable Nickel-Decorated Black Phosphorus and Its Room-Temperature Chemiresistive Gas Sensor Capabilities. ACS Applied Materials & Interfaces, 2021, 13, 44711-44722.	8.0	26
8	Development and characterization of WO3 nanoflakes for selective ethanol sensing. Sensors and Actuators B: Chemical, 2021, 347, 130593.	7.8	26
9	Metal Sulfides as a New Class of Sensing Materials. Procedia Engineering, 2015, 120, 138-141.	1.2	25
10	Tunable formation of nanostructured SiC/SiOC core-shell for selective detection of SO2. Sensors and Actuators B: Chemical, 2020, 305, 127485.	7.8	25
11	Detection of colorectal cancer biomarkers in the presence of interfering gases. Sensors and Actuators B: Chemical, 2015, 218, 289-295.	7.8	24
12	Correlation of gaseous emissions to water stress in tomato and maize crops: From field to laboratory and back. Sensors and Actuators B: Chemical, 2020, 303, 127227.	7.8	24
13	Nanostructured SmFeO3 Gas Sensors: Investigation of the Gas Sensing Performance Reproducibility for Colorectal Cancer Screening. Sensors, 2020, 20, 5910.	3.8	24
14	Reproducibility tests with zinc oxide thick-film sensors. Ceramics International, 2020, 46, 6847-6855.	4.8	23
15	Optimization of a Low-Power Chemoresistive Gas Sensor: Predictive Thermal Modelling and Mechanical Failure Analysis. Sensors, 2021, 21, 783.	3.8	23
16	Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity. Applied Physics Letters, 2014, 104, 222102.	3.3	20
17	Use of gas sensors and FOBT for the early detection of colorectal cancer. Sensors and Actuators B: Chemical, 2018, 262, 884-891.	7.8	19
18	Chemoresistive sensors for colorectal cancer preventive screening through fecal odor: Double-blind approach. Sensors and Actuators B: Chemical, 2019, 301, 127062.	7.8	18

ANDREA GAIARDO

#	Article	IF	CITATIONS
19	Preventive screening of colorectal cancer with a device based on chemoresistive sensors. Sensors and Actuators B: Chemical, 2017, 238, 1098-1101.	7.8	17
20	Aza-crown-ether functionalized graphene oxide for gas sensing and cation trapping applications. Materials Research Express, 2019, 6, 075603.	1.6	17
21	Strengthening of Wood-like Materials via Densification and Nanoparticle Intercalation. Nanomaterials, 2020, 10, 478.	4.1	17
22	Chemoresistive Gas Sensor based on SiC Thick Film: Possible Distinctive Sensing Properties Between H 2 S and SO 2. Procedia Engineering, 2016, 168, 276-279.	1.2	15
23	Design of a Metal-Oxide Solid Solution for Sub-ppm H ₂ Detection. ACS Sensors, 2022, 7, 573-583.	7.8	13
24	Investigation on Sensing Performance of Highly Doped Sb/SnO2. Sensors, 2022, 22, 1233.	3.8	12
25	Photo-activation of Cadmium Sulfide Films for Gas Sensing. Procedia Engineering, 2014, 87, 140-143.	1.2	10
26	Design and validation of a novel operando spectroscopy reaction chamber for chemoresistive gas sensors. Sensors and Actuators B: Chemical, 2021, 341, 130012.	7.8	10
27	Electrical, Optical and Sensing Properties of Photo-activated ZnO Thin Films. Procedia Engineering, 2014, 87, 148-151.	1.2	8
28	Neoplasms and metastasis detection in human blood exhalations with a device composed by nanostructured sensors. Sensors and Actuators B: Chemical, 2018, 271, 203-214.	7.8	8
29	Elucidating the Ambient Stability and Gas Sensing Mechanism of Nickel-Decorated Phosphorene for NO ₂ Detection: A First-Principles Study. ACS Omega, 2022, 7, 9808-9817.	3.5	8
30	Use of Gas Sensors and FOBT for the Early Detection of Colorectal Cancer. Proceedings (mdpi), 2017, 1,	0.2	6
31	Tin (IV) Sulfide chemoresistivity: A possible new gas sensing material. , 2015, , .		4
32	Development of a Sensor Array Based on Pt, Pd, Ag and Au Nanocluster Decorated SnO ₂ for Precision Agriculture. ECS Meeting Abstracts, 2021, MA2021-01, 1550-1550.	0.0	4
33	Semiconductor Gas Sensors to Analyze Fecal Exhalation as a Method for Colorectal Cancer Screening. Proceedings (mdpi), 2019, 14, .	0.2	3
34	MetaNChemo: A meta-heuristic neural-based framework for chemometric analysis. Applied Soft Computing Journal, 2020, 97, 106712.	7.2	3
35	Dataset of the Optimization of a Low Power Chemoresistive Gas Sensor: Predictive Thermal Modelling and Mechanical Failure Analysis. Data, 2021, 6, 30.	2.3	3
36	First-Principles Study of Electronic Conductivity, Structural and Electronic Properties of Oxygen-Vacancy-Defected SnO2. Journal of Nanoscience and Nanotechnology, 2021, 21, 2633-2640.	0.9	3

ANDREA GAIARDO

#	Article	IF	CITATIONS
37	Influence of Oxygen Vacancies in Gas Sensors Based on Metal-Oxide Semiconductors: A First-Principles Study. Lecture Notes in Electrical Engineering, 2020, , 309-314.	0.4	3
38	Nanostructured Chemoresistive Sensors for Oncological Screening: Preliminary Study with Single Sensor Approach on Human Blood Samples. Proceedings (mdpi), 2019, 14, 34.	0.2	2
39	Gas Sensing Properties Comparison between SnO ₂ and Highly Antimony-Doped SnO _{2 } materials. ECS Meeting Abstracts, 2021, MA2021-01, 1435-1435.	0.0	2
40	Glyphosate Detection: An Innovative Approach by Using Chemoresistive Gas Sensors. Proceedings (mdpi), 2018, 2, 910.	0.2	1
41	A New Method to Prepare Few-Layers of Nanoclusters Decorated Graphene: Nb2O5/Graphene and Its Gas Sensing Properties. Proceedings (mdpi), 2018, 2, .	0.2	1
42	The role of substrate materials on stabilization of CdO, 2CdO·CdSO4 and 2CdS·2CdO·CdSO4 from CdS powder film annealed in air. Materials Chemistry and Physics, 2021, 257, 123251.	4.0	1
43	New Chemoresistive Gas Sensor Arrays for Outdoor Air Quality Monitoring: A Combined R&D and Outreach Activities. ECS Meeting Abstracts, 2021, MA2021-01, 1556-1556.	0.0	1
44	Synthesis, Material and Electrical Characterization Combined with DFT Calculations of Reduced SnO2-x. ECS Meeting Abstracts, 2021, MA2021-01, 1492-1492.	0.0	1
45	New Chemoresistive Gas Sensor Arrays for Outdoor Air Quality Monitoring: A Combined R&D and Outreach Activities. ECS Meeting Abstracts, 2020, MA2020-01, 2203-2203.	0.0	1
46	Mesoporous silicon gas sensors: design, fabrication and conduction model. , 2015, , .		0
47	Devices for Screening and Monitoring of Tumors Based on Chemoresistive Sensors. Procedia Engineering, 2016, 168, 113-116.	1.2	0
48	Silicon Carbide: A Gas Sensing Material for Selective Detection of SO2. Proceedings (mdpi), 2017, 1, .	0.2	0
49	On the Optimization of a MEMS Device for Chemoresistive Gas Sensors. Proceedings (mdpi), 2017, 1, 746.	0.2	Ο
50	Sustainable Water Management: Sensors for Precision Farming. Proceedings (mdpi), 2017, 1, 780.	0.2	0
51	Influence of Oxygen Vacancies in Gas Sensors Based on Tin Dioxide Nanostructure: A First Principles Study. Proceedings (mdpi), 2019, 14, .	0.2	Ο
52	Elaboration and Characterization of SnO2 Doped TiO2 Gas Sensors Deposited through Dip and Spin Coating Methods. Proceedings (mdpi), 2019, 14, 23.	0.2	0
53	<i>A Special Section on</i> Advanced Nanomaterials and Devices: Environmental and Healthcare Applications. Journal of Nanoscience and Nanotechnology, 2021, 21, 2460-2461.	0.9	0
54	Water Stress Assessment through Gaseous Emissions Monitoring: A Case of Study in Tomato Fields. ECS Meeting Abstracts, 2021, MA2021-01, 1551-1551.	0.0	0

ANDREA GAIARDO

#	Article	IF	CITATIONS
55	(Sn,Ti,Nb)xO2 Solid Solution: An Innovative Nanostructured Material and Its Chemoresistive Properties. ECS Meeting Abstracts, 2021, MA2021-01, 1432-1432.	0.0	0
56	Nickel-Decorated Black Phosphorus for Room Temperature NO2 Detection. ECS Meeting Abstracts, 2021, MA2021-01, 1704-1704.	0.0	0
57	WO3 Nanoparticles and Nanoflakes Based Sensors for Selective Detection of Alcohols. ECS Meeting Abstracts, 2021, MA2021-01, 1437-1437.	0.0	0
58	Detection of Tumor Markers and Cell Metabolites in Cell Cultures, Using Nanostructured Chemoresistive Sensors. Lecture Notes in Electrical Engineering, 2018, , 51-58.	0.4	0
59	Development of a Pt, Pd, Ag and Au Nanocluster Decorated SnO2 Sensor Array for Precision Agriculture. ECS Meeting Abstracts, 2020, MA2020-01, 2248-2248.	0.0	0
60	Nickel-Decorated Black Phosphorus for Room Temperature NO2 detection. ECS Meeting Abstracts, 2020, MA2020-01, 2439-2439.	0.0	0
61	Gas Sensing Properties Comparison between SnO2 and Highly Antimony-Doped SnO2 Materials. ECS Meeting Abstracts, 2020, MA2020-01, 2077-2077.	0.0	О