
Yongyong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5596649/publications.pdf Version: 2024-02-01

YONCYONCL

#	Article	IF	CITATIONS
1	Nanosystem-mediated lactate modulation in the tumor micro environment for enhanced cancer therapy. Nano Research, 2023, 16, 654-671.	5.8	6
2	Nanotechnology-Based Approaches to Promote Lymph Node Targeted Delivery of Cancer Vaccines. ACS Biomaterials Science and Engineering, 2022, 8, 406-423.	2.6	10
3	HACE2-Exosome-Based Nano-Bait for Concurrent SARS-CoV-2 Trapping and Antioxidant Therapy. ACS Applied Materials & Interfaces, 2022, 14, 4882-4891.	4.0	17
4	Catalytic nanovaccine for cancer immunotherapy: A NADPH oxidase-inspired Fe-polyphenol network nanovaccine for enhanced antigen cross-presentation. Chemical Engineering Journal, 2022, 435, 134993.	6.6	10
5	Biomimetic and Materials-Potentiated Cell Engineering for Cancer Immunotherapy. Pharmaceutics, 2022, 14, 734.	2.0	1
6	Targeting the Negative Feedback of Adenosineâ€A2AR Metabolic Pathway by a Tailored Nanoinhibitor for Photothermal Immunotherapy. Advanced Science, 2022, 9, e2104182.	5.6	21
7	Remotely boosting hyaluronidase activity to normalize the hypoxic immunosuppressive tumor microenvironment for photothermal immunotherapy. Biomaterials, 2022, 284, 121516.	5.7	17
8	Dual Closed-Loop of Catalyzed Lactate Depletion and Immune Response to Potentiate Photothermal Immunotherapy. ACS Applied Materials & Interfaces, 2022, 14, 23260-23276.	4.0	19
9	Bioengineering of nano metal-organic frameworks for cancer immunotherapy. Nano Research, 2021, 14, 1244-1259.	5.8	37
10	A vaccine for photodynamic immunogenic cell death: tumor cell caged by cellular disulfide–thiol exchange for immunotherapy. Biomaterials Science, 2021, 9, 973-984.	2.6	10
11	Albumin-Based LL37 Peptide Nanoparticles as a Sustained Release System against <i>Pseudomonas aeruginosa</i> Lung Infection. ACS Biomaterials Science and Engineering, 2021, 7, 1817-1826.	2.6	13
12	Antibiotics armed neutrophils as a potential therapy for brain fungal infection caused by chemotherapy-induced neutropenia. Biomaterials, 2021, 274, 120849.	5.7	8
13	Engineered Biomimetic Nanoplatform Protects the Myocardium Against Ischemia/Reperfusion Injury by Inhibiting Pyroptosis. ACS Applied Materials & Interfaces, 2021, 13, 33756-33766.	4.0	29
14	Nanovaccine biomineralization for cancer immunotherapy: a NADPH oxidaseâ€inspired strategy for improving antigen cross-presentation via lipid peroxidation. Biomaterials, 2021, 277, 121089.	5.7	17
15	Nanofactory for metabolic and chemodynamic therapy: pro-tumor lactate trapping and anti-tumor ROS transition. Journal of Nanobiotechnology, 2021, 19, 426.	4.2	26
16	Ca ²⁺ -Mediated Surface Polydopamine Engineering to Program Dendritic Cell Maturation. ACS Applied Materials & Interfaces, 2020, 12, 4163-4173.	4.0	13
17	Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomaterials Science, 2020, 8, 552-568.	2.6	187
18	Nanoparticle reinforced bacterial outer-membrane vesicles effectively prevent fatal infection of carbapenem-resistant Klebsiella pneumoniae. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102148.	1.7	43

YONGYONG LI

#	Article	IF	CITATIONS
19	Selfâ€Albumin Camouflage of Carrier Protein Prevents Nontarget Antibody Production for Enhanced LDL Immunotherapy. Advanced Healthcare Materials, 2020, 9, 1901203.	3.9	2
20	Design Strategies and Applications of ROS-Responsive Phenylborate Ester-Based Nanomedicine. ACS Biomaterials Science and Engineering, 2020, 6, 6510-6527.	2.6	37
21	Photosensitizer-Laden Neutrophils Are Controlled Remotely for Cancer Immunotherapy. Cell Reports, 2020, 33, 108499.	2.9	7
22	Engineering antigen as photosensitiser nanocarrier to facilitate ROS triggered immune cascade for photodynamic immunotherapy. Biomaterials, 2020, 244, 119964.	5.7	62
23	A Novel Antiâ€Coagulative Nanocomplex in Delivering miRNAâ€1 Inhibitor Against Microvascular Obstruction of Myocardial Infarction. Advanced Healthcare Materials, 2020, 9, 1901783.	3.9	22
24	Turning weakness into strength: Albumin nanoparticle-redirected amphotericin B biodistribution for reducing nephrotoxicity and enhancing antifungal activity. Journal of Controlled Release, 2020, 324, 657-668.	4.8	15
25	PCSK9 Hapten Multicopy Displayed onto Carrier Protein Nanoparticle: An Antiatherosclerosis Vaccine. ACS Biomaterials Science and Engineering, 2019, 5, 4263-4271.	2.6	8
26	Microfiber-Reinforced Composite Hydrogels Loaded with Rat Adipose-Derived Stem Cells and BMP-2 for the Treatment of Medication-Related Osteonecrosis of the Jaw in a Rat Model. ACS Biomaterials Science and Engineering, 2019, 5, 2430-2443.	2.6	10
27	A highly sensitive living probe derived from nanoparticle-remodeled neutrophils for precision tumor imaging diagnosis. Biomaterials Science, 2019, 7, 5211-5220.	2.6	8
28	A nano-immunotraining strategy to enhance the tumor targeting of neutrophils <i>via in vivo</i> pathogen-mimicking stimulation. Biomaterials Science, 2019, 7, 5238-5246.	2.6	8
29	Remodeling of Cellular Surfaces via Fast Disulfide–Thiol Exchange To Regulate Cell Behaviors. ACS Applied Materials & Interfaces, 2019, 11, 47750-47761.	4.0	5
30	Programmable Ce6 Delivery via Cyclopamine Based Tumor Microenvironment Modulating Nano-System for Enhanced Photodynamic Therapy in Breast Cancer. Frontiers in Chemistry, 2019, 7, 853.	1.8	12
31	Self-Templated, Green-Synthetic, Size-Controlled Protein Nanoassembly as a Robust Nanoplatform for Biomedical Application. ACS Applied Materials & Interfaces, 2018, 10, 11457-11466.	4.0	28
32	Delivery of microRNA-1 inhibitor by dendrimer-based nanovector: An early targeting therapy for myocardial infarction in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 619-631.	1.7	43
33	Feverâ€Inspired Immunotherapy Based on Photothermal CpG Nanotherapeutics: The Critical Role of Mild Heat in Regulating Tumor Microenvironment. Advanced Science, 2018, 5, 1700805.	5.6	67
34	Recent Advances in Magneticâ€Nanomaterialâ€Based Mechanotransduction for Cell Fate Regulation. Advanced Materials, 2018, 30, e1705673.	11.1	57
35	Engineering docetaxel-loaded micelles for non-small cell lung cancer: a comparative study of microfluidic and bulk nanoparticle preparation. RSC Advances, 2018, 8, 31950-31966.	1.7	28
36	"Minimalist―Nanovaccine Constituted from Near Whole Antigen for Cancer Immunotherapy. ACS Nano, 2018, 12, 6398-6409.	7.3	81

Yongyong Li

#	Article	IF	CITATIONS
37	Polyethylene glycol–poly(ε-benzyloxycarbonyl-L-lysine)-conjugated VEGF siRNA for antiangiogenic gene therapy in hepatocellular carcinoma. International Journal of Nanomedicine, 2017, Volume 12, 3591-3603.	3.3	25
38	A graphene quantum dot (GQD) nanosystem with redox-triggered cleavable PEG shell facilitating selective activation of the photosensitiser for photodynamic therapy. RSC Advances, 2016, 6, 6516-6522.	1.7	27
39	Harnessing the PEG-cleavable strategy to balance cytotoxicity, intracellular release and the therapeutic effect of dendrigraft poly- <scp>l</scp> -lysine for cancer gene therapy. Journal of Materials Chemistry B, 2016, 4, 1284-1295.	2.9	37
40	Polymeric Nanosystems for Targeted Theranostics. , 2016, , 205-227.		2
41	Nano-assembly of bovine serum albumin driven by rare-earth-ion (Gd) biomineralization for highly efficient photodynamic therapy and tumor imaging. Journal of Materials Chemistry B, 2016, 4, 743-751.	2.9	40
42	Disulfide-Bridged Cleavable PEGylation of Poly-l-Lysine for SiRNA Delivery. Methods in Molecular Biology, 2016, 1364, 49-61.	0.4	9
43	Self-assembled, dual drug carrying polymer-drug conjugate for co-delivery. Journal of Controlled Release, 2015, 213, e139-e140.	4.8	3
44	Graphene-based nanovehicles for photodynamic medical therapy. International Journal of Nanomedicine, 2015, 10, 2451.	3.3	45
45	Effect of monomer sequence of poly(histidine/lysine) catiomers on gene packing capacity and delivery efficiency. RSC Advances, 2015, 5, 14138-14146.	1.7	5
46	Redox-Sensitive Polymeric Nanoparticles for Intracellular Drug Delivery. Frontiers in Nanobiomedical Research, 2015, , 21-48.	0.1	0
47	Reversible PEGylation and Schiff-base linked imidazole modification of polylysine for high-performance gene delivery. Journal of Materials Chemistry B, 2015, 3, 1507-1517.	2.9	20
48	Disulfide-bridged cleavable PEGylation in polymeric nanomedicine for controlled therapeutic delivery. Nanomedicine, 2015, 10, 1941-1958.	1.7	38
49	Supramolecular, prodrug-based micelles with enzyme-regulated release behavior for controlled drug delivery. MedChemComm, 2015, 6, 1874-1881.	3.5	4
50	Degradable and tunable supramolecular polymer micelles for drug delivery. Journal of Controlled Release, 2015, 213, e37-e38.	4.8	1
51	Single-protein-based theranostic nanosystem within sub-10 nm scale for tumor imaging and therapy. RSC Advances, 2015, 5, 73752-73759.	1.7	6
52	Gene Therapy: Suppression of VEGF by Reversible-PEGylated Histidylated Polylysine in Cancer Therapy (Adv. Healthcare Mater. 11/2014). Advanced Healthcare Materials, 2014, 3, 1694-1694.	3.9	0
53	Sheddable, degradable, cationic micelles enabling drug and gene delivery. RSC Advances, 2014, 4, 8165.	1.7	20
54	Self-assembled, redox-sensitive, H-shaped pegylated methotrexate conjugates with high drug-carrying capability for intracellular drug delivery. MedChemComm, 2014, 5, 147-152.	3.5	19

YONGYONG LI

#	Article	IF	CITATIONS
55	Suppression of VEGF by Reversibleâ€PEGylated Histidylated Polylysine in Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 1818-1827.	3.9	19
56	Green Synthetic, Multifunctional Hybrid Micelles with Shell Embedded Magnetic Nanoparticles for Theranostic Applications. ACS Applied Materials & amp; Interfaces, 2013, 5, 7227-7235.	4.0	34
57	Effects of spatial distribution of the nuclear localization sequence on gene transfection in catiomer–gene polyplexes. Journal of Materials Chemistry B, 2013, 1, 1712.	2.9	11
58	A Versatile Multicomponent Assembly via β yclodextrin Host–Guest Chemistry on Graphene for Biomedical Applications. Small, 2013, 9, 446-456.	5.2	73
59	Effective Gene Delivery Using Stimulus-Responsive Catiomer Designed with Redox-Sensitive Disulfide and Acid-Labile Imine Linkers. Biomacromolecules, 2012, 13, 1024-1034.	2.6	113
60	Engineering of peglayted camptothecin into core–shell nanomicelles for improving solubility, stability and combination delivery. MedChemComm, 2012, 3, 1555.	3.5	19
61	Engineered Redoxâ€Responsive PEG Detachment Mechanism in PEGylated Nanoâ€Graphene Oxide for Intracellular Drug Delivery. Small, 2012, 8, 760-769.	5.2	308
62	Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. Journal of Biomedical Materials Research - Part A, 2012, 100A, 141-148.	2.1	179
63	Supramolecular polymer micelles self-assembled from α -cyclodextrin and PLLA–PCL based copolymers. Journal of Controlled Release, 2011, 152, e52-e54.	4.8	3
64	Highly Efficient Drug Delivery Nanosystem via <scp>L</scp> â€Phenylalanine Triggering Based on Supramolecular Polymer Micelles. Macromolecular Rapid Communications, 2011, 32, 540-545.	2.0	17
65	A Facile Oneâ€Pot Construction of Supramolecular Polymer Micelles from αâ€Cyclodextrin and Poly(ε aprolactone). Angewandte Chemie - International Edition, 2008, 47, 5573-5576.	7.2	61