Julika Pitsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5596597/publications.pdf Version: 2024-02-01

ΙΠΙΙΚΑ ΡΙΤΟCΗ

#	Article	IF	CITATIONS
1	Dendritic Structural Degeneration Is Functionally Linked to Cellular Hyperexcitability in a Mouse Model of Alzheimer's Disease. Neuron, 2014, 84, 1023-1033.	8.1	242
2	Transcriptional Upregulation of Ca _v 3.2 Mediates Epileptogenesis in the Pilocarpine Model of Epilepsy. Journal of Neuroscience, 2008, 28, 13341-13353.	3.6	179
3	Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain, 2010, 133, 1403-1414.	7.6	157
4	Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11256-11261.	7.1	97
5	Protein instability, haploinsufficiency, and cortical hyper-excitability underlie STXBP1 encephalopathy. Brain, 2018, 141, 1350-1374.	7.6	87
6	Sulfatide Storage in Neurons Causes Hyperexcitability and Axonal Degeneration in a Mouse Model of Metachromatic Leukodystrophy. Journal of Neuroscience, 2007, 27, 9009-9021.	3.6	65
7	Rapid Loss of Dendritic HCN Channel Expression in Hippocampal Pyramidal Neurons following Status Epilepticus. Journal of Neuroscience, 2011, 31, 14291-14295.	3.6	62
8	Functional role of mGluR1 and mGluR4 in pilocarpine-induced temporal lobe epilepsy. Neurobiology of Disease, 2007, 26, 623-633.	4.4	61
9	Circadian clustering of spontaneous epileptic seizures emerges after pilocarpineâ€induced status epilepticus. Epilepsia, 2017, 58, 1159-1171.	5.1	46
10	Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1. Nature Communications, 2015, 6, 8688.	12.8	42
11	The pilocarpine model of mesial temporal lobe epilepsy: Over one decade later, with more rodent species and new investigative approaches. Neuroscience and Biobehavioral Reviews, 2021, 130, 274-291.	6.1	41
12	Neuroinflammation Alters Integrative Properties of Rat Hippocampal Pyramidal Cells. Molecular Neurobiology, 2018, 55, 7500-7511.	4.0	36
13	Anti-epileptogenic and Anti-convulsive Effects of Fingolimod in Experimental Temporal Lobe Epilepsy. Molecular Neurobiology, 2019, 56, 1825-1840.	4.0	27
14	Calcium Channel Subunit α2δ4 Is Regulated by Early Growth Response 1 and Facilitates Epileptogenesis. Journal of Neuroscience, 2019, 39, 3175-3187.	3.6	24
15	Downregulation of Spermine Augments Dendritic Persistent Sodium Currents and Synaptic Integration after Status Epilepticus. Journal of Neuroscience, 2015, 35, 15240-15253.	3.6	21
16	The Presynaptic Active Zone Protein RIM1α Controls Epileptogenesis following Status Epilepticus. Journal of Neuroscience, 2012, 32, 12384-12395.	3.6	20
17	<scp>CD8</scp> ⁺ T‣ymphocyte–Driven Limbic Encephalitis Results in Temporal Lobe Epilepsy. Annals of Neurology, 2021, 89, 666-685.	5.3	18
18	Drebrin Autoantibodies in Patients with Seizures and Suspected Encephalitis. Annals of Neurology, 2020, 87, 869-884.	5.3	17

Julika Pitsch

#	Article	IF	CITATIONS
19	Heterogeneity and excitability of <i>BRAF V600E</i> -induced tumors is determined by Akt/mTOR-signaling state and <i>Trp53</i> -loss. Neuro-Oncology, 2022, 24, 741-754.	1.2	16
20	Polyamine Modulation of Anticonvulsant Drug Response: A Potential Mechanism Contributing to Pharmacoresistance in Chronic Epilepsy. Journal of Neuroscience, 2018, 38, 5596-5605.	3.6	11
21	Impact of T cells on neurodegeneration in antiâ€GAD65 limbic encephalitis. Annals of Clinical and Translational Neurology, 2021, 8, 2289-2301.	3.7	10
22	Zinc induces longâ€ŧerm upregulation of Tâ€ŧype calcium current in hippocampal neurons <i>in vivo</i> . Journal of Physiology, 2012, 590, 5895-5905.	2.9	8
23	Minute amounts of hamartin wildtype rescue the emergence of tuber-like lesions in conditional Tsc1 ablated mice. Neurobiology of Disease, 2016, 95, 134-144.	4.4	8
24	A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
25	Adult-onset temporal lobe epilepsy suspicious for autoimmune pathogenesis: Autoantibody prevalence and clinical correlates. PLoS ONE, 2020, 15, e0241289.	2.5	8
26	Seizure underreporting in <scp>LGI1</scp> and <scp>CASPR2</scp> antibody encephalitis. Epilepsia, 2022, 63, .	5.1	6
27	>Partial sciatic nerve ligation leads to an upregulation of Ni ²⁺ -resistant T-type Ca ²⁺ currents in capsaicin-responsive nociceptive dorsal root ganglion neurons. Journal of Pain Research, 2019, Volume 12, 635-647.	2.0	4
28	Ste20-like Kinase Is Critical for Inhibitory Synapse Maintenance and Its Deficiency Confers a Developmental Dendritopathy. Journal of Neuroscience, 2021, 41, 8111-8125.	3.6	4
29	Neuropathic pain in experimental autoimmune neuritis is associated with altered electrophysiological properties of nociceptive DRG neurons. Experimental Neurology, 2017, 297, 25-35.	4.1	3
30	SCN1A overexpression, associated with a genomic region marked by a risk variant for a common epilepsy, raises seizure susceptibility. Acta Neuropathologica, 2022, 144, 107-127.	7.7	3
31	Functional genomics and target gene validation in experimental and human disease. Drug Discovery Today: Technologies, 2004, 1, 105-111.	4.0	0
32	Analysis of autoantibody spectrum and human herpesvirus 6 in adult patients with â€~early' versus â€~late' diagnosis of â€~possible limbic encephalitis'. Epilepsy Research, 2021, 176, 106698.	м 1.6	0
33	Title is missing!. , 2020, 15, e0241289.		0
34	Title is missing!. , 2020, 15, e0241289.		0
35	Title is missing!. , 2020, 15, e0241289.		0
36	Title is missing!. , 2020, 15, e0241289.		0