Raymond F Schinazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5596527/publications.pdf

Version: 2024-02-01

319 papers 13,533 citations

59 h-index 101 g-index

336 all docs

336 docs citations

336 times ranked 14401 citing authors

#	Article	IF	CITATIONS
1	Cu(I)-Catalyzed Huisgen Azideâ^'Alkyne 1,3-Dipolar Cycloaddition Reaction in Nucleoside, Nucleotide, and Oligonucleotide Chemistry. Chemical Reviews, 2009, 109, 4207-4220.	23.0	732
2	Synthesis of Nucleoside Phosphate and Phosphonate Prodrugs. Chemical Reviews, 2014, 114, 9154-9218.	23.0	440
3	Zika Virus Infects Human Placental Macrophages. Cell Host and Microbe, 2016, 20, 83-90.	5.1	410
4	Nomenclature for antiviral-resistant human hepatitis B virus mutations in the polymerase region. Hepatology, 2001, 33, 751-757.	3 . 6	351
5	COVID-19: Discovery, diagnostics and drug development. Journal of Hepatology, 2021, 74, 168-184.	1.8	302
6	Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chemical Reviews, 2016, 116, 14379-14455.	23.0	265
7	The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance. Journal of Clinical Investigation, 2001, 107, 449-455.	3.9	255
8	Towards an HBV cure: state-of-the-art and unresolved questionsâ€"report of the ANRS workshop on HBV cure. Gut, 2015, 64, 1314-1326.	6.1	234
9	<scp>HCV</scp> directâ€acting antiviral agents: the best interferonâ€free combinations. Liver International, 2014, 34, 69-78.	1.9	213
10	\hat{l}^2 - <scp>d</scp> - <i>N</i> 4-hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But Is Also Mutagenic To Mammalian Cells. Journal of Infectious Diseases, 2021, 224, 415-419.	1.9	211
11	Synthesis of enantiomerically pure (2'R,5'S)-(-)-1-(2-hydroxymethyloxathiolan-5-yl)cytosine as a potent antiviral agent against hepatitis B virus (HBV) and human immunodeficiency virus (HIV). Journal of Organic Chemistry, 1992, 57, 2217-2219.	1.7	207
12	Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology, 2015, 476, 196-205.	1.1	202
13	Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. Journal of Biological Chemistry, 2021, 297, 100770.	1.6	200
14	Design, Synthesis, and Antiviral Activity of 2â€~-Deoxy-2â€~-fluoro-2â€~-C-methylcytidine, a Potent Inhibitor of Hepatitis C Virus Replication. Journal of Medicinal Chemistry, 2005, 48, 5504-5508.	2.9	189
15	Antiviral I -Nucleosides Specific for Hepatitis B Virus Infection. Antimicrobial Agents and Chemotherapy, 2001, 45, 229-235.	1.4	179
16	Ribonucleoside Analogue That Blocks Replication of Bovine Viral Diarrhea and Hepatitis C Viruses in Culture. Antimicrobial Agents and Chemotherapy, 2003, 47, 244-254.	1.4	175
17	Viral Sanctuaries during Highly Active Antiretroviral Therapy in a Nonhuman Primate Model for AIDS. Journal of Virology, 2010, 84, 2913-2922.	1.5	163
18	Baricitinib treatment resolves lower-airway macrophage inflammation and neutrophil recruitment in SARS-CoV-2-infected rhesus macaques. Cell, 2021, 184, 460-475.e21.	13.5	156

#	Article	IF	CITATIONS
19	In situ complexation directs the stereochemistry of N-glycosylation in the synthesis of thialanyl and dioxolanyl nucleoside analogs. Journal of the American Chemical Society, 1991, 113, 9377-9379.	6.6	134
20	Treatment of hepatitis C virus infection with directâ€acting antiviral agents: 100% cure?. Liver International, 2018, 38, 7-13.	1.9	128
21	Antiviral Activities and Cellular Toxicities of Modified 2′,3′-Dideoxy-2′,3′-Didehydrocytidine Analogues. Antimicrobial Agents and Chemotherapy, 2002, 46, 3854-3860.	1.4	120
22	Acyclovir Is Activated into a HIV-1 Reverse Transcriptase Inhibitor in Herpesvirus-Infected Human Tissues. Cell Host and Microbe, 2008, 4, 260-270.	5.1	119
23	Use of Baricitinib in Patients With Moderate to Severe Coronavirus Disease 2019. Clinical Infectious Diseases, 2021, 72, 1247-1250.	2.9	116
24	Asymmetric synthesis of 1,3-dioxolane-pyrimidine nucleosides and their anti-HIV activity Journal of Medicinal Chemistry, 1992, 35, 1987-1995.	2.9	112
25	Inhibition of Hepatitis C Replicon RNA Synthesis by β-D-2′-deoxy-2′-fluoro-2′- <i>C</i> Methylcytidine: A Specific Inhibitor of Hepatitis C Virus Replication. Antiviral Chemistry and Chemotherapy, 2006, 17, 79-87.	0.3	110
26	Differential Removal of Thymidine Nucleotide Analogues from Blocked DNA Chains by Human Immunodeficiency Virus Reverse Transcriptase in the Presence of Physiological Concentrations of 2′-Deoxynucleoside Triphosphates. Antimicrobial Agents and Chemotherapy, 2000, 44, 3465-3472.	1.4	108
27	Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Research, 2017, 144, 223-246.	1.9	104
28	Cost analysis of sofosbuvir/ribavirin versus sofosbuvir/simeprevir for genotype 1 hepatitis C virus in interferon-ineligible/intolerant individuals. Hepatology, 2014, 60, 37-45.	3.6	103
29	Mechanism of Activation of \hat{l}^2 -d- $2\hat{a}$ e 2 -Deoxy- $2\hat{a}$ e 2 -Fluoro- $2\hat{a}$ e 2 -C-Methylcytidine and Inhibition of Hepatitis C Virus NS5B RNA Polymerase. Antimicrobial Agents and Chemotherapy, 2007, 51, 503-509.	1.4	101
30	Preclinical Characterization of GLS4, an Inhibitor of Hepatitis B Virus Core Particle Assembly. Antimicrobial Agents and Chemotherapy, 2013, 57, 5344-5354.	1,4	99
31	Best strategies for global <scp>HCV</scp> eradication. Liver International, 2013, 33, 68-79.	1.9	97
32	In Vitro Selection of Mutations in the Human Immunodeficiency Virus Type 1 Reverse Transcriptase That Decrease Susceptibility to $(\hat{a}^*)^2$ d -Dioxolane-Guanosine and Suppress Resistance to $3\hat{a}\in^2$ -Azido- $3\hat{a}\in^2$ -Deoxythymidine. Antimicrobial Agents and Chemotherapy, 2000, 44, 1783-1788.	1.4	95
33	Ribonucleoside Triphosphates as Substrate of Human Immunodeficiency Virus Type 1 Reverse Transcriptase in Human Macrophages. Journal of Biological Chemistry, 2010, 285, 39380-39391.	1.6	94
34	Affinity of the antiviral enantiomers of oxathiolane cytosine nucleosides for human 2′-deoxycytidine kinase. Biochemical Pharmacology, 1993, 45, 1540-1543.	2.0	93
35	Enzyme-mediated enantioselective preparation of pure enantiomers of the antiviral agent 2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC) and related compounds. Journal of Organic Chemistry, 1992, 57, 5563-5565.	1.7	91
36	1,3-Dioxolanylpurine nucleosides (2R,4R) and (2R,4S) with selective anti-HIV-1 activity in human lymphocytes. Journal of Medicinal Chemistry, 1993, 36, 30-37.	2.9	90

#	Article	IF	CITATIONS
37	Lbeta(2S,4S)- and Lalpha(2S,4R)-dioxolanyl nucleosides as potential anti-HIV agents: asymmetric synthesis and structure-activity relationships. Journal of Medicinal Chemistry, 1993, 36, 519-528.	2.9	89
38	Antiretroviral Therapy in Macrophages: Implication for HIV Eradication. Antiviral Chemistry and Chemotherapy, 2009, 20, 63-78.	0.3	86
39	Role of Marine Natural Products in the Genesis of Antiviral Agents. Chemical Reviews, 2015, 115, 9655-9706.	23.0	85
40	Nucleic acids and nucleosides containing carboranes. Journal of Organometallic Chemistry, 1999, 581, 156-169.	0.8	84
41	Ruxolitinib and Tofacitinib Are Potent and Selective Inhibitors of HIV-1 Replication and Virus Reactivation (i>In Vitro (i>. Antimicrobial Agents and Chemotherapy, 2014, 58, 1977-1986.	1.4	82
42	Mechanism of Action of $1-\hat{l}^2$ - d -2,6-Diaminopurine Dioxolane, a Prodrug of the Human Immunodeficiency Virus Type 1 Inhibitor $1-\hat{l}^2$ - d -Dioxolane Guanosine. Antimicrobial Agents and Chemotherapy, 2001, 45, 158-165.	1.4	81
43	Efficacy and safety of 3-week response-guided triple direct-acting antiviral therapy for chronic hepatitis C infection: a phase 2, open-label, proof-of-concept study. The Lancet Gastroenterology and Hepatology, 2016, 1, 97-104.	3.7	80
44	Baicalein and Baicalin Inhibit SARS-CoV-2 RNA-Dependent-RNA Polymerase. Microorganisms, 2021, 9, 893.	1.6	80
45	Multiple drug effect analysis with confidence interval. Antiviral Research, 1994, 25, 1-11.	1.9	79
46	Preparation of ribavirin analogues by copper- and ruthenium-catalyzed azide-alkyne 1,3-dipolar cycloaddition. Tetrahedron, 2008, 64, 9044-9051.	1.0	78
47	Human Herpesvirus 8 Open Reading Frame 21 Is a Thymidine and Thymidylate Kinase of Narrow Substrate Specificity That Efficiently Phosphorylates Zidovudine but Not Ganciclovir. Journal of Virology, 2000, 74, 684-692.	1.5	77
48	SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells. Virology, 2016, 495, 92-100.	1.1	77
49	Synthesis and Anti-HIV and Anti-HBV Activities of 2â€~-Fluoro-2â€~,3â€~-unsaturated l-Nucleosides. Journal of Medicinal Chemistry, 1999, 42, 1320-1328.	2.9	71
50	Relationship between Antiviral Activity and Host Toxicity: Comparison of the Incorporation Efficiencies of 2′,3′-Dideoxy-5-Fluoro-3′-Thiacytidine-Triphosphate Analogs by Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Human Mitochondrial DNA Polymerase. Antimicrobial Agents and Chemotherapy, 2004, 48, 1300-1306.	1.4	71
51	Nucleoside Inhibitors of Human Immunodeficiency Virus Type 1 Reverse Transcriptase. Current Topics in Medicinal Chemistry, 2004, 4, 895-919.	1.0	71
52	Novel mechanisms to inhibit HIV reservoir seeding using Jak inhibitors. PLoS Pathogens, 2017, 13, e1006740.	2.1	71
53	Dynamics of Subgenomic Hepatitis C Virus Replicon RNA Levels in Huh-7 Cells after Exposure to Nucleoside Antimetabolites. Journal of Virology, 2003, 77, 10689-10694.	1.5	70
54	A research agenda for curing chronic hepatitis B virus infection. Hepatology, 2018, 67, 1127-1131.	3.6	70

#	Article	IF	CITATIONS
55	Chutes and ladders in hepatitis C nucleoside drug development. Antiviral Research, 2014, 102, 119-147.	1.9	69
56	Mechanistic studies show that (â^')â€FTCâ€TP is a better inhibitor of HIVâ€1 reverse transcriptase than 3TCâ€TP. FASEB Journal, 1999, 13, 1511-1517.	0.2	66
57	Antiretroviral Monocyte Efficacy Score Linked to Cognitive Impairment in Hiv. Antiviral Therapy, 2012, 17, 1233-1242.	0.6	66
58	Characterization of \hat{l}^2 - <scp>d</scp> - <i>N</i> ⁴ -Hydroxycytidine as a Novel Inhibitor of Chikungunya Virus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	64
59	Synthesis, cytotoxicity, and antiviral activities of new neolignans related to honokiol and magnolol. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4428-4431.	1.0	63
60	Antiviral Activity of Nucleoside Analogues against Norovirus. Antiviral Therapy, 2012, 17, 981-991.	0.6	63
61	Significance of endangered and threatened plant natural products in the control of human disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16832-16837.	3.3	63
62	Towards <scp>HBV</scp> curative therapies. Liver International, 2018, 38, 102-114.	1.9	63
63	Suppression of Virus Load by Highly Active Antiretroviral Therapy in Rhesus Macaques Infected with a Recombinant Simian Immunodeficiency Virus Containing Reverse Transcriptase from Human Immunodeficiency Virus Type 1. Journal of Virology, 2005, 79, 7349-7354.	1.5	61
64	Cofactor Mimics as Selective Inhibitors of NAD-dependent Inosine Monophospate Dehydrogenase (IMPDH) - the Major Therapeutic Target. Current Medicinal Chemistry, 2004, 11, 887-900.	1.2	60
65	In Vitro Activity of Structurally Diverse Nucleoside Analogs against Human Immunodeficiency Virus Type 1 with the K65R Mutation in Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 2005, 49, 1139-1144.	1.4	60
66	The Janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model. Neurobiology of Disease, 2016, 92, 137-143.	2.1	60
67	Boron Containing Pyrimidines, Nucleosides, and Oligonucleotides for Neutron Capture Therapy. Nucleosides & Nucleotides, 1994, 13, 849-880.	0.5	58
68	Predicting Zika virus structural biology: Challenges and opportunities for intervention. Antiviral Chemistry and Chemotherapy, 2015, 24, 118-126.	0.3	58
69	Synthesis, Structureâ^'Activity Relationships, and Drug Resistance of β-d-3 -Fluoro-2 ,3 -Unsaturated Nucleosides as Anti-HIV Agents. Journal of Medicinal Chemistry, 2004, 47, 3399-3408.	2.9	57
70	Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Medicinal Chemistry Research, 2012, 21, 3741-3749.	1.1	57
71	Synthesis and antiviral activity of 2′-deoxy-2′-fluoro-2′-C-methyl purine nucleosides as inhibitors of hepatitis C virus RNA replication. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1712-1715.	1.0	56
72	Treatment as prevention and cure towards global eradication of hepatitis C virus. Trends in Microbiology, 2013, 21, 625-633.	3.5	56

#	Article	IF	CITATIONS
73	Combined Antiviral Effect of Interferon and Acyclovir on Herpes Simplex Virus Types 1 and 2. Antimicrobial Agents and Chemotherapy, 1981, 19, 672-674.	1.4	55
74	Asymmetric synthesis of enantiomerically pure (\hat{a}°) - $(1\hat{a} \in {}^2R, 4\hat{a} \in {}^2R)$ -dioxolane-thymine and its anti-HIV activity Tetrahedron Letters, 1991, 32, 3791-3794.	0.7	55
7 5	Effect of \hat{I}^2 -enantiomeric and racemic nucleoside analogues on mitochondrial functions in HepG2 cells. Biochemical Pharmacology, 1996, 52, 1577-1584.	2.0	54
76	Nucleosides. 133. Synthesis of 5-alkenyl-1-(2-deoxy-2-fluorobetaD-arabinofuranosyl)cytosines and related pyrimidine nucleosides as potential antiviral agents. Journal of Medicinal Chemistry, 1985, 28, 741-748.	2.9	53
77	Synthesis and Biological Evaluation of 2â€~,3â€~-Didehydro-2â€~,3â€~-dideoxy-5- fluorocytidine (D4FC) Analogues: Discovery of Carbocyclic Nucleoside Triphosphates with Potent Inhibitory Activity against HIV-1 Reverse Transcriptase1. Journal of Medicinal Chemistry, 1999, 42, 859-867.	Â 2.9	51
78	Facile Purification of Honokiol and Its Antiviral and Cytotoxic Properties. Journal of Medicinal Chemistry, 2006, 49, 3426-3427.	2.9	51
79	Pharmacology of current and promising nucleosides for the treatment of human immunodeficiency viruses. Antiviral Research, 2006, 71, 322-334.	1.9	51
80	Advances in nucleoside monophosphate prodrugs as anti-HCV agents. Antiviral Therapy, 2010, 15, 935-950.	0.6	51
81	Approaches to hepatitis C treatment and cure using NS5A inhibitors. Infection and Drug Resistance, 2014, 7, 41.	1.1	51
82	SAMHD1 Functions and Human Diseases. Viruses, 2020, 12, 382.	1.5	51
83	Structureâ°'Activity Relationships of 2â€~-Deoxy-2â€~,2â€~-difluoro-l-erythro-pentofuranosyl Nucleosides. Journal of Medicinal Chemistry, 1997, 40, 3635-3644.	2.9	50
84	Simian Immunodeficiency Virus Persistence in Cellular and Anatomic Reservoirs in Antiretroviral Therapy-Suppressed Infant Rhesus Macaques. Journal of Virology, 2018, 92, .	1.5	49
85	DPC 817: a Cytidine Nucleoside Analog with Activity against Zidovudine- and Lamivudine-Resistant Viral Variants. Antimicrobial Agents and Chemotherapy, 2002, 46, 1394-1401.	1.4	48
86	l-2â€~,3â€~-Didehydro-2â€~,3â€~-dideoxy-3â€~-fluoronucleosides:  Synthesis, Anti-HIV Activity, Chemical and Er Stability, and Mechanism of Resistance. Journal of Medicinal Chemistry, 2003, 46, 3245-3256.	nzymatic 2.9	46
87	Raltegravir Is a Potent Inhibitor of XMRV, a Virus Implicated in Prostate Cancer and Chronic Fatigue Syndrome. PLoS ONE, 2010, 5, e9948.	1.1	46
88	Cellular pharmacology and biological activity of 5-carboranyl-2′-deoxyuridine. International Journal of Radiation Oncology Biology Physics, 1994, 28, 1113-1120.	0.4	45
89	Carboranyl Oligonucleotides. 2. Synthesis and Physicochemical Properties of Dodecathymidylate Containing 5-(o-Carboran-1-yl)-2'-deoxyuridine. Journal of the American Chemical Society, 1994, 116, 7494-7501.	6.6	45
90	Substrates and Inhibitors of SAMHD1. PLoS ONE, 2017, 12, e0169052.	1.1	45

#	Article	IF	Citations
91	Repurposing Nucleoside Analogs for Human Coronaviruses. Antimicrobial Agents and Chemotherapy, 2020, 65, .	1.4	45
92	Simultaneous Quantification of Intracellular Natural and Antiretroviral Nucleosides and Nucleotides by Liquid Chromatographyâ^Tandem Mass Spectrometry. Analytical Chemistry, 2010, 82, 1982-1989.	3.2	44
93	Asymmetric Binding to NS5A by Daclatasvir (BMS-790052) and Analogs Suggests Two Novel Modes of HCV Inhibition. Journal of Medicinal Chemistry, 2014, 57, 10031-10043.	2.9	44
94	3′-Azido-2′,3′-Dideoxyuridine (AzddU): Comparative Pharmacokinetics with 3′-Azido-3′-Deoxythymi in Monkeys. AIDS Research and Human Retroviruses, 1990, 6, 219-228.	dine (AZT 0.5	7) 43
95	Enhanced Antiviral Benefit of Combination Therapy with Lamivudine and Alpha Interferon against WHV Replication in Chronic Carrier Woodchucks. Antiviral Therapy, 2000, 5, 95-104.	0.6	43
96	Nucleosides. 136. Synthesis and antiviral effects of several 1-(2-deoxy-2-fluorobetaD-arabinofuranosyl)-5-alkyluracils. Some structure-activity relationships. Journal of Medicinal Chemistry, 1986, 29, 151-154.	2.9	42
97	Comparative pharmacokinetics and interspecies scaling of 3'-azido-3'-deoxythymidine(AZT) in several mammalian species Journal of Pharmacobio-dynamics, 1990, 13, 206-211.	0.5	40
98	Efavirenz Therapy in Rhesus Macaques Infected with a Chimera of Simian Immunodeficiency Virus Containing Reverse Transcriptase from Human Immunodeficiency Virus Type 1. Antimicrobial Agents and Chemotherapy, 2004, 48, 3483-3490.	1.4	40
99	Synthesis of sulfamoylbenzamide derivatives as HBV capsid assembly effector. European Journal of Medicinal Chemistry, 2017, 138, 407-421.	2.6	40
100	Synthesis, Biotransformation, and Pharmacokinetic Studies of 9-(β-d-Arabinofuranosyl)-6-azidopurine: A Prodrug for Ara-A Designed To Utilize the Azide Reduction Pathway1. Journal of Medicinal Chemistry, 1996, 39, 5202-5207.	2.9	38
101	The 3′-Azido Group Is Not the Primary Determinant of 3′-Azido-3′-deoxythymidine (AZT) Responsible for the Excision Phenotype of AZT-resistant HIV-1. Journal of Biological Chemistry, 2005, 280, 29047-29052.	1.6	38
102	Antiviral iodinated pyrimidine deoxyribonucleosides: 5-iodo-2′-deoxyuridine; 5′-iodo-2′-deoxycytidine; 5-iodo-5′-amino-2′,5′-didoxyuridine. , 1979, 7, 1-34.		37
103	Probing the structural and molecular basis of nucleotide selectivity by human mitochondrial DNA polymerase Î ³ . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8596-8601.	3.3	37
104	dNTP pool modulation dynamics by SAMHD1 protein in monocyte-derived macrophages. Retrovirology, 2014, 11, 63.	0.9	36
105	Baricitinib reverses HIV-associated neurocognitive disorders in a SCID mouse model and reservoir seeding in vitro. Journal of Neuroinflammation, 2019, 16, 182.	3.1	36
106	Ribonucleotide reductase inhibitors suppress <scp>SAMHD</scp> 1 ara― <scp>CTP</scp> ase activity enhancing cytarabine efficacy. EMBO Molecular Medicine, 2020, 12, e10419.	3.3	35
107	Cell-Based and Animal Models for Hepatitis B and C Viruses. Antiviral Chemistry and Chemotherapy, 1999, 10, 99-114.	0.3	34
108	HIV-1 Resistance Profile of the Novel Nucleoside Reverse Transcriptase Inhibitor β-D-2′,3′-Dideoxy-2′,3′-Didehydro-5-Fluorocytidine (Reverset™). Antiviral Chemistry and Chemothera 2003, 14, 49-59.	арху,3	34

#	Article	IF	CITATIONS
109	Cellular Pharmacology and Potency of HIV-1 Nucleoside Analogs in Primary Human Macrophages. Antimicrobial Agents and Chemotherapy, 2013, 57, 1262-1269.	1.4	34
110	Resistance to reverse transcriptase inhibitors used in the treatment and prevention of HIV-1 infection. Future Microbiology, 2015, 10, 1773-1782.	1.0	34
111	Synthesis, Antiviral Activity, and Mechanism of Drug Resistance ofd- andl-2â€~,3â€~-Didehydro-2â€~,3â€~-dideoxy-2â€~-fluorocarbocyclic Nucleosides. Journal of Medicinal Chemistry, 2005, 48, 3736-3748.	2.9	32
112	Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages. Virology, 2016, 491, 106-114.	1.1	32
113	Randomized Trial of Ruxolitinib in Antiretroviral-Treated Adults With Human Immunodeficiency Virus. Clinical Infectious Diseases, 2022, 74, 95-104.	2.9	31
114	Metabolism of the Anti-Hepatitis C Virus Nucleoside \hat{l}^2 - d - N 4 -Hydroxycytidine in Different Liver Cells. Antimicrobial Agents and Chemotherapy, 2004, 48, 4636-4642.	1.4	30
115	Combinations of 2'- <i>C</i> -Ki>C-Ki>C-Ki>C-Ki>C-Ki>C-Ki>C-Ki>C-Ki>-Ki>-Ki>-Ki>-Ki>-Ki>-Ki>-Ki>-Ki>-K	0.3	30
116	\hat{l}^2 - <scp>d</scp> -2 \hat{a} - <i>C</i> -Methyl-2,6-diaminopurine Ribonucleoside Phosphoramidates are Potent and Selective Inhibitors of Hepatitis C Virus (HCV) and Are Bioconverted Intracellularly to Bioactive 2,6-Diaminopurine and Guanosine 5 \hat{a} -Triphosphate Forms. Journal of Medicinal Chemistry, 2015, 58, 3445-3458.	2.9	30
117	Pharmacokinetics and Placental Transfer of Elvitegravir, Dolutegravir, and Other Antiretrovirals during Pregnancy. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	30
118	Stavudine Resistance: An Update on Susceptibility following Prolonged Therapy. Antiviral Therapy, 1999, 4, 21-28.	0.6	30
119	Antiviral and antineoplastic activities of pyrimidine arabinosyl nucleosides and their 5'-amino derivatives. Journal of Medicinal Chemistry, 1979, 22, 1273-1277.	2.9	29
120	A chemiluminescence immunoassay for evaluation of Cryptosporidium parvum growth in vitro. FEMS Microbiology Letters, 1996, 136, 251-256.	0.7	29
121	Derivatives of 4â€aminoâ€3,6â€disulfonatoâ€1, 8â€naphthalimide inhibit reverse transcriptase and suppress human and feline immunodeficiency virus expression in cultured cells. Journal of Cellular Biochemistry, 1993, 51, 446-457.	1.2	28
122	Synthesis and Potent Anti-HIV Activity ofl-3â€~-Fluoro-2â€~,3â€~-Unsaturated Cytidine. Organic Letters, 2001, 3, 4177-4180.	2.4	28
123	Novel Hepatitis B Virus Capsid Assembly Modulator Induces Potent Antiviral Responses <i>In Vitro</i> and in Humanized Mice. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	28
124	Mechanistic and Kinetic Differences between Reverse Transcriptases of Vpx Coding and Non-coding Lentiviruses. Journal of Biological Chemistry, 2015, 290, 30078-30086.	1.6	26
125	From <scp>HCV</scp> To <scp>HBV</scp> Cure. Liver International, 2017, 37, 73-80.	1.9	26
126	Single-Amplicon Multiplex Real-Time Reverse Transcription-PCR with Tiled Probes To Detect SARS-CoV-2 <i>spike</i> Mutations Associated with Variants of Concern. Journal of Clinical Microbiology, 2021, 59, e0144621.	1.8	26

#	Article	IF	CITATIONS
127	Anti-hepatitis C Virus Activity of Novel β-D-2′- <i>C</i> Phosphoramidate Prodrugs. Antiviral Chemistry and Chemotherapy, 2009, 20, 99-106.	0.3	25
128	The synthesis and anti-hiv activity of pyrimidine dioxolanyl nucleosides. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 169-174.	1.0	24
129	Synthesis of 2′,3′-dideoxy-3′-fluoro-l-ribonucleosides as potential antiviral agents from d-sorbitol. Carbohydrate Research, 2000, 328, 49-59.	1.1	24
130	Interactions of enantiomers of 2′,3′-didehydro-2′,3′-dideoxy-fluorocytidine with wild type and M184V mutant HIV-1 reverse transcriptase. Antiviral Research, 2002, 56, 189-205.	1.9	24
131	The Impact of Macrophage Nucleotide Pools on HIV-1 Reverse Transcription, Viral Replication, and the Development of Novel Antiviral Agents. Molecular Biology International, 2012, 2012, 1-8.	1.7	24
132	Toward Elimination of Hepatitis B Virus Using Novel Drugs, Approaches, and Combined Modalities. Clinics in Liver Disease, 2016, 20, 737-749.	1.0	24
133	New Classes of Fluorinated L-Nucleosides; Synthesis and Antiviral Activity. Nucleosides & Nucleotides, 1999, 18, 537-540.	0.5	23
134	Mutations in the conserved woodchuck hepatitis virus polymerase FLLA and YMDD regions conferring resistance to lamivudine. Antiviral Research, 2002, 55, 141-150.	1.9	23
135	Anti-HIV Activity of (â^')-(2R,4R)-1- (2-Hydroxymethyl-1,3-dioxolan-4-yl)- thymine against Drug-Resistant HIV-1 Mutants and Studies of Its Molecular Mechanism. Journal of Medicinal Chemistry, 2005, 48, 3949-3952.	2.9	23
136	Simian immunodeficiency virus macaque models of HIV latency. Current Opinion in HIV and AIDS, 2011, 6, 57-61.	1.5	23
137	2′-Chloro,2′-fluoro Ribonucleotide Prodrugs with Potent Pan-genotypic Activity against Hepatitis C Virus Replication in Culture. Journal of Medicinal Chemistry, 2017, 60, 5424-5437.	2.9	23
138	ANTI-HBV SPECIFIC β-L-2′-DEOXYNUCLEOSIDES. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 597-607.	0.4	22
139	Probing the Mechanistic Consequences of 5-Fluorine Substitution on Cytidine Nucleotide Analogue Incorporation by HIV-1 Reverse Transcriptase. Antiviral Chemistry and Chemotherapy, 2003, 14, 115-125.	0.3	22
140	Synthesis and biological evaluation of new potent and selective HCV NS5A inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3488-3491.	1.0	22
141	Jak Inhibitors Modulate Production of Replication Competent Zika Virus in Human Hofbauer, Trophoblasts, and Neuroblastoma cells. Pathogens and Immunity, 2017, 2, 199.	1.4	22
142	Pharmacokinetics of (-)-beta-D-Dioxolane Guanine and Prodrug (-)-beta-D-2,6-Diaminopurine Dioxolane in Rats and Monkeys. AIDS Research and Human Retroviruses, 1999, 15, 1625-1630.	0.5	21
143	From d-to l-nucleoside analogs as antiviral agents. Advances in Antiviral Drug Design, 1999, , 1-68.	0.7	21
144	Synthesis and evaluation of non-dimeric HCV NS5A inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2031-2034.	1.0	21

#	Article	IF	CITATIONS
145	Kinetic variations between reverse transcriptases of viral protein X coding and noncoding lentiviruses. Retrovirology, 2014, 11, 111.	0.9	21
146	Chronic liver inflammation modifies DNA methylation at the precancerous stage of murine hepatocarcinogenesis. Oncotarget, 2015, 6, 11047-11060.	0.8	21
147	Increased activity of unlinked Zika virus NS2B/NS3 protease compared to linked Zika virus protease. Biochemical and Biophysical Research Communications, 2017, 492, 668-673.	1.0	21
148	Template-assisted synthesis of adenine-mutagenized cDNA by a retroelement protein complex. Nucleic Acids Research, 2018, 46, 9711-9725.	6.5	21
149	Ribonucleotide incorporation in yeast genomic DNA shows preference for cytosine and guanosine preceded by deoxyadenosine. Nature Communications, 2020, 11, 2447.	5.8	21
150	Efficient synthesis of nucleoside aryloxy phosphoramidate prodrugs utilizing benzyloxycarbonyl protection. Tetrahedron, 2011, 67, 5487-5493.	1.0	20
151	Structural insights into the recognition of nucleoside reverse transcriptase inhibitors by HIVâ€I reverse transcriptase: First crystal structures with reverse transcriptase and the active triphosphate forms of lamivudine and emtricitabine. Protein Science, 2019, 28, 1664-1675.	3.1	20
152	Potential drugâ€"drug interactions between antiretroviral therapy and treatment regimens for multi-drug resistant tuberculosis: Implications for HIV care of MDR-TB co-infected individuals. International Journal of Infectious Diseases, 2019, 83, 98-101.	1.5	20
153	Comparison of anti-SARS-CoV-2 activity and intracellular metabolism of remdesivir and its parent nucleoside. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100045.	1.7	20
154	Pharmacodynamics of (â^')-β-2′,3′-Dideoxy-3′-Thiacytidine in Chronically Virus-Infected Woodchucks Compared to Its Pharmacodynamics in Humans. Antimicrobial Agents and Chemotherapy, 1998, 42, 2804-2809.	1.4	19
155	Anti-Human Immunodeficiency Virus Activity, Cross-Resistance, Cytotoxicity, and Intracellular Pharmacology of the 3′-Azido-2′,3′-Dideoxypurine Nucleosides. Antimicrobial Agents and Chemotherapy, 2009, 53, 3715-3719.	1.4	19
156	Synthesis and antiviral activity of $2\hat{a}\in^2$ -deoxy- $2\hat{a}\in^2$ -fluoro- $2\hat{a}\in^2$ -C-methyl-7-deazapurine nucleosides, their phosphoramidate prodrugs and $5\hat{a}\in^2$ -triphosphates. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7094-7098.	1.0	19
157	Mobile Health Intervention to Reduce HIV Transmission: A Randomized Trial of Behaviorally Enhanced HIV Treatment as Prevention (B-TasP). Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 78, 34-42.	0.9	19
158	HIV nucleoside reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 2022, 240, 114554.	2.6	19
159	Synthesis and Biological Properties of5-o-Carboranyl-1-(2-deoxy-2-fluorobetaD-arabinofuranosyl)uracil. Journal of Medicinal Chemistry, 1994, 37, 2583-2588.	2.9	18
160	Tissue Disposition of 5â€oâ€Carboranyluracil—A Novel Agent for the Boron Neutron Capture Therapy of Prostate Cancer. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 291-306.	0.4	18
161	Analysis of Multiply Spliced Transcripts in Lymphoid Tissue Reservoirs of Rhesus Macaques Infected with RT-SHIV during HAART. PLoS ONE, 2014, 9, e87914.	1.1	18
162	Intracellular diversion of glycoprotein GP160 of human immunodeficiency virus to lysosomes as a strategy of AIDS gene therapy. FASEB Journal, 1993, 7, 1070-1080.	0.2	17

#	Article	IF	CITATIONS
163	Comparative Pharmacokinetics of Racivir®, (±)-β-2′,3′-Dideoxy-5-Fluoro-3′-Thiacytidine in Rats, Rabbits Dogs, Monkeys and HIV-Infected Humans. Antiviral Chemistry and Chemotherapy, 2005, 16, 117-127.	0.3	17
164	Development of an Optimized Dose for Coformulation of Zidovudine with Drugs That Select for the K65R Mutation Using a Population Pharmacokinetic and Enzyme Kinetic Simulation Model. Antimicrobial Agents and Chemotherapy, 2008, 52, 4241-4250.	1.4	17
165	Azetidines and spiro azetidines as novel P2 units in hepatitis C virus NS3 protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6325-6330.	1.0	17
166	Anti-human immunodeficiency virus type-1 (HIV-1) and anti-hepatitis B virus (HBV) activities of (2,3-dideoxy-2-fluoro- $\hat{1}^2$ -L-threo-pentofuranosyl)nucleosides. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 877-880.	1.0	16
167	In Vitro Selection and Analysis of Human Immunodeficiency Virus Type 1 Resistant to Derivatives of β-2′,3′-Didehydro-2′,3′-Dideoxy-5-Fluorocytidine. Antimicrobial Agents and Chemotherapy, 2005, 49, 3930-3932.	1.4	16
168	Synthesis and anti-HIV activity of $(\hat{a}^2)^2$ -d- $(2R,4R)^2$ -d-ioxolane-2,6-diamino purine (DAPD) (amdoxovir) and $(\hat{a}^2)^2$ -d- $(2R,4R)^2$ -d-ioxolane guanosine (DXG) prodrugs. Antiviral Research, 2007, 75, 198-209.	1.9	16
169	Balancing Antiviral Potency and Host Toxicity: Identifying a Nucleotide Inhibitor with an Optimal Kinetic Phenotype for HIV-1 Reverse Transcriptase. Molecular Pharmacology, 2012, 82, 125-133.	1.0	16
170	Synthesis and Evaluation of 2,6-Modified Purine $2\hat{a}\in^2-\langle i\rangle C\langle i\rangle$ -Methyl Ribonucleosides as Inhibitors of HCV Replication. ACS Medicinal Chemistry Letters, 2016, 7, 17-22.	1.3	16
171	Interplay of ancestral non-primate lentiviruses with the virus-restricting SAMHD1 proteins of their hosts. Journal of Biological Chemistry, 2018, 293, 16402-16412.	1.6	16
172	Non-alcoholic fatty liver disease is a risk factor for occurrence of hepatocellular carcinoma after sustained virologic response in chronic hepatitis C patients: A prospective four-years follow-up study. Metabolism Open, 2021, 10, 100090.	1.4	16
173	Cellular Pharmacology of D-d4FC, a Nucleoside Analogue Active against Drug-Resistant HIV. Antiviral Chemistry and Chemotherapy, 2003, 14, 39-47.	0.3	15
174	Synthesis of β-Enantiomers of <i>N</i> ⁴ -Hydroxy-3′-Deoxy-Pyrimidine Nucleosides and Their Evaluation against Bovine Viral Diarrhoea Virus and Hepatitis C Virus in Cell Culture. Antiviral Chemistry and Chemotherapy, 2004, 15, 43-55.	0.3	15
175	Practical considerations for developing nucleoside reverse transcriptase inhibitors. Drug Discovery Today: Technologies, 2012, 9, e183-e193.	4.0	15
176	Nucleoside Analogs with Selective Antiviral Activity against Dengue Fever and Japanese Encephalitis Viruses. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	15
177	Potent in vitro activity of \hat{l}^2 -D-4 \hat{E}^1 -chloromethyl-2 \hat{E}^1 -deoxy-2 \hat{E}^1 -fluorocytidine against Nipah virus. Antiviral Research, 2020, 175, 104712.	1.9	15
178	Modulation of plasma uridine concentration by 5-(phenylselenenyl)acyclouridine, an inhibitor of uridine phosphorylase: relevance to chemotherapy. Cancer Chemotherapy and Pharmacology, 2000, 45, 351-361.	1.1	14
179	Development of a pharmacodynamic model for HIV treatment with nucleoside reverse transcriptase and protease inhibitors. Antiviral Research, 2002, 56, 115-127.	1.9	14
180	Investigating the effects of stereochemistry on incorporation and removal of 5-fluorocytidine analogs by mitochondrial DNA polymerase gamma: comparison of d- and l-D4FC-TP. Antiviral Research, 2004, 62, 57-64.	1.9	14

#	Article	IF	CITATIONS
181	A CRISPR/Cas9 approach reveals that the polymerase activity of DNA polymerase \hat{l}^2 is dispensable for HIV-1 infection in dividing and nondividing cells. Journal of Biological Chemistry, 2017, 292, 14016-14025.	1.6	14
182	Ruxolitinib sensitizes ovarian cancer to reduced dose Taxol, limits tumor growth and improves survival in immune competent mice. Oncotarget, 2017, 8, 94040-94053.	0.8	14
183	Synthesis and antiviral evaluation of novel peptidomimetics as norovirus protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2165-2170.	1.0	14
184	Visualization of Positive and Negative Sense Viral RNA for Probing the Mechanism of Direct-Acting Antivirals against Hepatitis C Virus. Viruses, 2019, 11, 1039.	1.5	14
185	Pharmacokinetics of the Antiviral Agent β- d -2′,3′-Didehydro-2′,3′-Dideoxy-5-Fluorocytidine in Rhesus Monkeys. Antimicrobial Agents and Chemotherapy, 1999, 43, 381-384.	1.4	14
186	Assessment of the Abbott BinaxNOW SARS-CoV-2 rapid antigen test against viral variants of concern. IScience, 2022, 25, 103968.	1.9	14
187	Synthesis, anti-human immunodeficiency virus, and anti-hepatitis B virus activity of pyrimidine oxathiolane nucleosides. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 693-696.	1.0	13
188	Pharmacokinetics of 5â€Carboranylâ€2â€2â€deoxyuridine in Rats. Journal of Pharmaceutical Sciences, 1994, 83, 1697-1699.	1.6	13
189	Synthesis, Biological Activity and Decomposition Studies of Amino Acid Phosphomonoester Amidates of Acyclovir. Nucleosides & Nucleotides, 1997, 16, 2079-2092.	0.5	13
190	Cellular Pharmacology of theD- andL-Enantiomers of β-5-o-Carboranyl-2′-deoxyuridine. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 691-702.	0.4	13
191	ESR as a valuable tool for the investigation of the dynamics of EPC and EPC/cholesterol liposomes containing a carboranyl-nucleoside intended for BNCT. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1712, 81-91.	1.4	13
192	Biochemical Studies on the Mechanism of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Resistance to $1-(\hat{l}^2-d$ -Dioxolane)Thymine Triphosphate. Antimicrobial Agents and Chemotherapy, 2007, 51, 2078-2084.	1.4	13
193	Comparative analysis of in vitro processivity of HIV-1 reverse transcriptases containing mutations 65R, 74V, 184V and 65R+74V. Antiviral Research, 2009, 83, 317-323.	1.9	13
194	Antiviral activity and tolerability of amdoxovir with zidovudine in a randomized double-blind placebo-controlled study in HIV-1-infected individuals. Antiviral Therapy, 2010, 15, 185-192.	0.6	13
195	Synthesis and evaluation of 3′-azido-2′,3′-dideoxypurine nucleosides as inhibitors of human immunodeficiency virus. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 60-64.	1.0	13
196	Synthesis of purine modified $2\hat{a}\in^2$ -C-methyl nucleosides as potential anti-HCV agents. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6788-6792.	1.0	13
197	Synthesis and evaluation of novel potent HCV NS5A inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4864-4868.	1.0	13
198	Discovery, characterization, and lead optimization of 7-azaindole non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4101-4105.	1.0	13

#	Article	IF	Citations
199	Synthesis and antiviral evaluation of novel heteroarylpyrimidines analogs as HBV capsid effectors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 904-910.	1.0	13
200	Studies on the Efficacy, Potential Cardiotoxicity and Monkey Pharmacokinetics of GLP-26 as a Potent Hepatitis B Virus Capsid Assembly Modulator. Viruses, 2021, 13, 114.	1.5	13
201	Viral Decay Kinetics in the Highly Active Antiretroviral Therapy-Treated Rhesus Macaque Model of AIDS. PLoS ONE, 2010, 5, e11640.	1.1	13
202	A Short Synthesis of 2′,3′-Didehydro-3′-deoxythymidine. Nucleosides & Nucleotides, 1993, 12, 149-155.	0.5	12
203	A General Synthetic Method of 5-Carboranyluracil Nucleosides with Potential Antiviral Activity and use in Neutron Capture Therapy. Nucleosides & Nucleotides, 1997, 16, 2133-2150.	0.5	12
204	A New Point Mutation (P157S) in the Reverse Transcriptase of Human Immunodeficiency Virus Type 1 Confers Low-Level Resistance to $(\hat{a}^{\cdot \cdot})$ - $(\hat{a}^{\cdot \cdot$	1.4	12
205	Enantioselective synthesis and biological evaluation of 5- o -carboranyl pyrimidine nucleosides. Bioorganic and Medicinal Chemistry, 1999, 7, 2759-2766.	1.4	12
206	Synthesis, antiviral activity, cytotoxicity and cellular pharmacology of l-3′-azido-2′,3′-dideoxypurine nucleosides. European Journal of Medicinal Chemistry, 2011, 46, 3832-3844.	2.6	12
207	Synthesis and anti-HCV activity of a series of \hat{l}^2 - d $-2\hat{a}\in^2$ -deoxy- $2\hat{a}\in^2$ -dibromo nucleosides and their corresponding phosphoramidate prodrugs. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5296-5299.	1.0	12
208	Carboranyl Oligonucleotides for Antisense Technology and Boron Neutron Capture Therapy of Cancers. ACS Symposium Series, 1994, , 169-182.	0.5	11
209	Review Hepatitis B Virus Resistance to Lamivudine and its Clinical Implications. Antiviral Chemistry and Chemotherapy, 2002, 13, 143-155.	0.3	11
210	Emergence of a Novel Mutation in the FLLA Region of Hepatitis B Virus during Lamivudine Therapy. Antimicrobial Agents and Chemotherapy, 2005, 49, 2618-2624.	1.4	11
211	Antiviral and Cellular Metabolism Interactions between Dexelvucitabine and Lamivudine. Antimicrobial Agents and Chemotherapy, 2007, 51, 2130-2135.	1.4	11
212	Synthesis, antiviral activity, and stability of nucleoside analogs containing tricyclic bases. European Journal of Medicinal Chemistry, 2009, 44, 3845-3851.	2.6	11
213	Evaluation of Single and Combination Therapies with Tenofovir Disoproxil Fumarate and Emtricitabine <i>In Vitro</i> and in a Robust Mouse Model Supporting High Levels of Hepatitis B Virus Replication. Antimicrobial Agents and Chemotherapy, 2012, 56, 6186-6191.	1.4	11
214	Randomized, Double-Blind, Multicenter Safety and Efficacy Study of Rifalazil Compared with Azithromycin for Treatment of Uncomplicated Genital Chlamydia trachomatis Infection in Women. Antimicrobial Agents and Chemotherapy, 2014, 58, 4014-4019.	1.4	11
215	Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094. Antimicrobial Agents and Chemotherapy, 2016, 60, 4659-4669.	1.4	11
216	Discovery of a Series of 2′-α-Fluoro,2′-β-bromo-ribonucleosides and Their Phosphoramidate Prodrugs as Potent Pan-Genotypic Inhibitors of Hepatitis C Virus. Journal of Medicinal Chemistry, 2019, 62, 1859-1874.	2.9	11

#	Article	IF	CITATIONS
217	Structural and Antiviral Studies of the Human Norovirus GII.4 Protease. Biochemistry, 2019, 58, 900-907.	1.2	11
218	Potent Antiviral Effect of Reversetâ,,¢ in HIV-1-Infected Adults following a Single Oral Dose. Antiviral Therapy, 2004, 9, 529-536.	0.6	11
219	Development of a Novel Mouse Model to Evaluate Drug Candidates against Hepatitis B Virus. Antiviral Chemistry and Chemotherapy, 2007, 18, 213-223.	0.3	10
220	Development of a Population Simulation Model for HIV Monotherapy Virological Outcomes Using Lamivudine. Antiviral Chemistry and Chemotherapy, 2007, 18, 329-341.	0.3	10
221	Pharmacokinetics of the Antiviral Agent β-d-2′-Deoxy-2′-Fluoro-2′-C-Methylcytidine in Rhesus Monkeys. Antimicrobial Agents and Chemotherapy, 2007, 51, 2877-2882.	1.4	10
222	Enhanced Antiretroviral Therapy in Rhesus Macaques Improves RT-SHIV Viral Decay Kinetics. Antimicrobial Agents and Chemotherapy, 2014, 58, 3927-3933.	1.4	10
223	Synthesis and antiviral evaluation of $2\hat{a}\in ^2$, $2a$	0.7	10
224	GNS561 Exhibits Potent Antiviral Activity against SARS-CoV-2 through Autophagy Inhibition. Viruses, 2022, 14, 132.	1.5	10
225	Biotransformation and pharmacokinetics of prodrug 9-(\hat{l}^2 -d-1,3-dioxolan-4-yl)-2-aminopurine and its antiviral metabolite 9-(\hat{l}^2 -d-1,3-dioxolan-4-yl)guanine in mice. Antiviral Research, 1997, 35, 187-193.	1.9	9
226	Synthesis and Biological Properties of the Four Optical Isomers of 5-o-Carboranyl-2′,3′-didehydro-2′,3′-dideoxyuridine. Nucleosides & Nucleotides, 1998, 17, 711-727.	0.5	9
227	Synthesis and anti-HIV activity of 5-haloethynyl and 5-(1,2-dihalo)vinyl analogues of AZT and FLT. Tetrahedron, 2008, 64, 4444-4452.	1.0	9
228	Approaches for the Development of Antiviral Compounds: The Case of Hepatitis C Virus. Handbook of Experimental Pharmacology, 2009, , 25-51.	0.9	9
229	Synthesis of 6-imino-5-tetrahydro-1H-2-pyrrolylidenhexahydro-2,4-pyrimidinediones as intermediates for the synthesis of C-azanucleosides. Tetrahedron Letters, 2010, 51, 231-233.	0.7	9
230	Prodrug strategies for improved efficacy of nucleoside antiviral inhibitors. Current Opinion in HIV and AIDS, 2013, 8, 556-564.	1.5	9
231	Residual Viremia in an RT-SHIV Rhesus Macaque HAART Model Marked by the Presence of a Predominant Plasma Clone and a Lack of Viral Evolution. PLoS ONE, 2014, 9, e88258.	1.1	9
232	Synthesis and antiviral evaluation of 2′,3′-dideoxy-2′,3′-difluoro-D-arabinofuranosyl 2,6-disubstituted purine nucleosides. Heterocyclic Communications, 2015, 21, 315-327.	0.6	9
233	Synthesis and anti-HCV activity of β-d-2′-deoxy-2′-α-chloro-2′-β-fluoro and β-d-2′-deoxy-2′-α-brom nucleosides and their phosphoramidate prodrugs. Bioorganic and Medicinal Chemistry, 2019, 27, 664-676.	ıo-2′-β- 1.4	fluoro 9
234	Discovery and structure activity relationship of glyoxamide derivatives as anti-hepatitis B virus agents. Bioorganic and Medicinal Chemistry, 2021, 31, 115952.	1.4	9

#	Article	IF	CITATIONS
235	The Effect of JAK1/2 Inhibitors on HIV Reservoir Using Primary Lymphoid Cell Model of HIV Latency. Frontiers in Immunology, 2021, 12, 720697.	2.2	9
236	Elimination of Aicardi–GoutiÔres syndrome protein SAMHD1 activates cellular innate immunity and suppresses SARS-CoV-2 replication. Journal of Biological Chemistry, 2022, 298, 101635.	1.6	9
237	In Vitro Evaluation of Anticryptosporidial Agents Using MDCK Cell Culture and Chemiluminescence Immunoassay. Journal of Eukaryotic Microbiology, 1996, 43, 87S-87S.	0.8	8
238	Comparison of Physicochemical and Biological Properties of (<i>>o</i> -Carboran-1-YL)methylphosphonate and Methylphosphonate Oligonucleotides. Nucleosides & Nucleotides, 1997, 16, 1503-1505.	0.5	8
239	Synthesis of Six-Membered Nucleoside Analogs. Part 1: Pyrimidine Nucleosides Based on the 1,3-Dioxane Ring System. Nucleosides & Nucleotides, 1997, 16, 403-416.	0.5	8
240	Synthesis and Antiviral Activities of Enantiomeric 1-[2-(Hydroxymethyl) Cyclopropyl] Methyl Nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 253-268.	0.4	8
241	Synthesis and evaluation of Janus type nucleosides as potential HCV NS5B polymerase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3385-3388.	1.0	8
242	Sonication-Assisted Synthesis of $\langle i \rangle (E) \langle i \rangle$ -2-Methyl-but-2-enyl Nucleoside Phosphonate Prodrugs. ChemistrySelect, 2016, 1, 3108-3113.	0.7	8
243	Nucleotide Substrate Specificity of Anti-Hepatitis C Virus Nucleoside Analogs for Human Mitochondrial RNA Polymerase. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	8
244	Nucleoside Analogs with Antiviral Activity against Yellow Fever Virus. Antimicrobial Agents and Chemotherapy, $2019, 63, .$	1.4	8
245	Novel influenza polymerase PB2 inhibitors for the treatment of influenza A infection. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126639.	1.0	8
246	7-Deaza-7-fluoro-2′-C-methyladenosine inhibits Zika virus infection and viral-induced neuroinflammation. Antiviral Research, 2020, 180, 104855.	1.9	8
247	Metabolism of Nucleosides and Nucleotides Prodrugs. Current Pharmaceutical Design, 2018, 23, 6984-7002.	0.9	8
248	The Mechanism of Action of Hepatitis B Virus Capsid Assembly Modulators Can Be Predicted from Binding to Early Assembly Intermediates. Journal of Medicinal Chemistry, 2022, 65, 4854-4864.	2.9	8
249	2 ′ ,3 ′ -Didehydro-2 ′ ,3 ′ -dideoxynucleosides are degraded to furfuryl alcohol under acidic conditions. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2159-2162.	1.0	7
250	Pharmacology and Pharmacokinetics of the Antiviral Agent β- d -2′,3′-Dideoxy-3′-Oxa-5-Fluorocytidine in Cells and Rhesus Monkeys. Antimicrobial Agents and Chemotherapy, 2005, 49, 2589-2597.	1.4	7
251	The Boron–Neutron Capture Agent β-d-5-o-Carboranyl-2′-deoxyuridine Accumulates Preferentially in Dividing Brain Tumor Cells. Journal of Neuro-Oncology, 2005, 74, 275-280.	1.4	7
252	Lack of Pharmacokinetic Interaction between Amdoxovir and Reduced- and Standard-Dose Zidovudine in HIV-1-Infected Individuals. Antimicrobial Agents and Chemotherapy, 2010, 54, 1248-1255.	1.4	7

#	Article	IF	CITATIONS
253	Synthesis and Biological Evaluation of 4′â€ <i>C</i> ,3′â€ <i>O</i> å€Propyleneâ€Linked Bicyclic Nucleosides. European Journal of Organic Chemistry, 2011, 2011, 7390-7399.	1.2	7
254	Selection and Characterization of HIV-1 with a Novel S68 Deletion in Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 2011, 55, 2054-2060.	1.4	7
255	Anti-HIV-1 screening of (2E)-3-(2-chloro-6-methyl/methoxyquinolin-3-yl)-1-(aryl)prop-2-en-1-ones. Medicinal Chemistry Research, 2014, 23, 402-407.	1.1	7
256	Synthesis of carbocyclic nucleoside analogs with five-membered heterocyclic nucleobases. Tetrahedron Letters, 2015, 56, 3587-3590.	0.7	7
257	Synthesis of (2 <i>S</i>)-2-Chloro-2-fluororibolactone via Stereoselective Electrophilic Fluorination. Journal of Organic Chemistry, 2017, 82, 13171-13178.	1.7	7
258	Host SAMHD1 protein restricts endogenous reverse transcription of HIV-1 in nondividing macrophages. Retrovirology, 2018, 15, 69.	0.9	7
259	Synthesis of 2-fluoro-substituted and 2,6-modified purine 2′,3′-dideoxy-2′,3′-difluoro-d-arabinofuranos nucleosides from d-xylose. Tetrahedron, 2019, 75, 2037-2046.	yl 1.0	7
260	Structural and functional characterization explains loss of dNTPase activity of the cancer-specific R366C/H mutant SAMHD1 proteins. Journal of Biological Chemistry, 2021, 297, 101170.	1.6	7
261	In Vitro Expression of mRNA Coding For a Cryptosporidium parvum Oocyst Wall Protein. Journal of Eukaryotic Microbiology, 1996, 43, 84s-85S.	0.8	6
262	Effect of 5-(phenylselenenyl)acyclouridine, an inhibitor of uridine phosphorylase, on plasma concentration of uridine released from $2\hat{a} \in ^2$, $3\hat{a} \in ^2$ -tri- O -acetyluridine, a prodrug of uridine: relevance to uridine rescue in chemotherapy. Cancer Chemotherapy and Pharmacology, 2000, 46, 235-240.	1.1	6
263	In silico study supports the efficacy of a reduced dose regimen for stavudine. Antiviral Research, 2011, 92, 372-377.	1.9	6
264	Scaleable processes for the synthesis of (\hat{a}°) - \hat{l}^2 -d-2,6-diaminopurine dioxolane (Amdoxovir, DAPD) and (\hat{a}°) - \hat{l}^2 -d-2-aminopurine dioxolane (APD). Tetrahedron, 2012, 68, 5738-5743.	1.0	6
265	Acute acalculous cholecystitis during zika virus infection in an immunocompromised patient. Hepatology, 2018, 67, 2051-2054.	3.6	6
266	Efficient pre-catalytic conformational change of reverse transcriptases from SAMHD1 non-counteracting primate lentiviruses during dNTP incorporation. Virology, 2019, 537, 36-44.	1.1	6
267	Effect of induced dNTP pool imbalance on HIV-1 reverse transcription in macrophages. Retrovirology, 2019, 16, 29.	0.9	6
268	Mechanistic cross-talk between DNA/RNA polymerase enzyme kinetics and nucleotide substrate availability in cells: Implications for polymerase inhibitor discovery. Journal of Biological Chemistry, 2020, 295, 13432-13443.	1.6	6
269	Moving Fast Toward Hepatitis B Virus Elimination. Advances in Experimental Medicine and Biology, 2021, 1322, 115-138.	0.8	6
270	RADx Variant Task Force Program for Assessing the Impact of Variants on SARS-CoV-2 Molecular and Antigen Tests. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 1-1.	1.7	6

#	Article	IF	Citations
271	Contemporary Approaches to the Discovery and Development of Broad-Spectrum Natural Product Prototypes for the Control of Coronaviruses. Journal of Natural Products, 2021, 84, 3001-3007.	1.5	6
272	Synthesis of Cyclopentanyl Carbocyclic 5-Fluorocytosine ((\hat{a}^{\cdot}))-5-Fluorocarbodine) Using a Facially Selective Hydrogenation Approach. Journal of Organic Chemistry, 2013, 78, 723-727.	1.7	5
273	Synthesis and antiviral evaluation of 2-amino-6-carbamoylpurine dioxolane nucleoside derivatives and their phosphoramidates prodrugs. Bioorganic and Medicinal Chemistry, 2014, 22, 6665-6671.	1.4	5
274	Ligand similarity guided receptor selection enhances docking accuracy and recall for non-nucleoside HIV reverse transcriptase inhibitors. Journal of Molecular Modeling, 2015, 21, 282.	0.8	5
275	Differential regulatory activities of viral protein X for anti-viral efficacy of nucleos(t)ide reverse transcriptase inhibitors in monocyte-derived macrophages and activated CD4+ T cells. Virology, 2015, 485, 313-321.	1.1	5
276	Anti-human immunodeficiency activity of novel 2-arylpyrrolidine analogs. Medicinal Chemistry Research, 2017, 26, 101-108.	1.1	5
277	Disparate effects of Cytotoxic Chemotherapy on the Antiviral Activity of Antiretroviral Therapy: Implications for Treatments of HIV-Infected Cancer Patients. Antiviral Therapy, 2019, 24, 177-186.	0.6	5
278	HIV transmission in discordant couples in Africa in the context of antiretroviral therapy availability. Aids, 2018, 32, 1613-1623.	1.0	5
279	Synthesis of 4′-Substituted-2′-Deoxy-2′-α-Fluoro Nucleoside Analogs as Potential Antiviral Agents. Molecules, 2020, 25, 1258.	1.7	5
280	Covidâ€19 will not "magically disappear― Why access to widespread testing is paramount. American Journal of Hematology, 2021, 96, 174-178.	2.0	5
281	Disproportionate presence of adenosine in mitochondrial and chloroplast DNA of Chlamydomonas reinhardtii. IScience, 2021, 24, 102005.	1.9	5
282	Potent antiviral effect of reverset in HIV-1-infected adults following a single oral dose. Antiviral Therapy, 2004, 9, 529-36.	0.6	5
283	Inactivation of SARS-CoV-2 and COVID-19 Patient Samples for Contemporary Immunology and Metabolomics Studies. ImmunoHorizons, 2022, 6, 144-155.	0.8	5
284	Preclinical and clinical development of the anti-HIV, anti-HBV oxathiolane nucleoside analog emtricitabine., 2003,, 451-484.		4
285	Pre-steady state kinetic analysis of HIV-1 reverse transcriptase for non-canonical ribonucleoside triphosphate incorporation and DNA synthesis from ribonucleoside-containing DNA template. Antiviral Research, 2015, 115, 75-82.	1.9	4
286	Application of Molecular Dynamics Simulations to the Design of Nucleotide Inhibitors Binding to Norovirus Polymerase. Journal of Chemical Information and Modeling, 2020, 60, 6566-6578.	2.5	4
287	Novel 1′-homo- <i>N</i> -2′-deoxy-α-nucleosides: synthesis, characterization and biological activity. RSC Advances, 2020, 10, 15815-15824.	1.7	4
288	Long-term Virological and Adherence Outcomes to Antiviral Treatment in a 4-year Cohort Chronic HBV Study. Antiviral Therapy, 2019, 24, 567-579.	0.6	4

#	Article	IF	CITATIONS
289	The best backbone for HIV prevention, treatment, and elimination: Emtricitabine+tenofovir. Antiviral Therapy, 2022, 27, 135965352110675.	0.6	4
290	Cloning and Expression of Sporozoite and Oocyst Cryptosporidium parvum Recombinant Proteins Journal of Eukaryotic Microbiology, 1996, 43, 83S-83S.	0.8	3
291	Emtricitabine. Drugs, 2003, 63, 2425-2426.	4.9	3
292	<i>N</i> 4-Acyl-Modified D-2′,3′-Dideoxy-5-Fluorocytidine Nucleoside Analogues with Improved Antiviral Activity. Antiviral Chemistry and Chemotherapy, 2003, 14, 81-90.	0.3	3
293	Molecular mechanism of HIV-1 resistance to $3\hat{a}\in 2$ -azido- $2\hat{a}\in 2$, $3\hat{a}\in 2$ -dideoxyguanosine. Antiviral Research, 2014, 10 62-67.)] _{1:9}	3
294	Editorial overview: Antiviral strategies. Current Opinion in Virology, 2016, 18, v-vi.	2.6	3
295	FRI-157-Novel HBV capsid assembly modulator inhibits pregenomic RNA encapsidation by accelerating capsid assembly kinetics and disrupting core protein dephosphorylation. Journal of Hepatology, 2019, 70, e457.	1.8	3
296	Disentangling the lifespans of hepatitis C virusâ€infected cells and intracellular vRNA replicationâ€complexes during directâ€acting antiâ€viral therapy. Journal of Viral Hepatitis, 2020, 27, 261-269.	1.0	3
297	Intracellular metabolism and potential cardiotoxicity of a β-D-2'-C-methyl-2,6-diaminopurine ribonucleoside phosphoramidate that inhibits hepatitis C virus replication. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 204-224.	0.4	3
298	Post-Catalytic Complexes with Emtricitabine or Stavudine and HIV-1 Reverse Transcriptase Reveal New Mechanistic Insights for Nucleotide Incorporation and Drug Resistance. Molecules, 2020, 25, 4868.	1.7	3
299	Viral protein X reduces the incorporation of mutagenic noncanonical rNTPs during lentivirus reverse transcription in macrophages. Journal of Biological Chemistry, 2020, 295, 657-666.	1.6	3
300	Viral Pharmacodynamic Model for $(\hat{a} \in \hat{a}) - \hat{l}^2 - 2\hat{a} \in \hat{a}$, $3\hat{a} \in \hat{a}$ -Dideoxy-5-Fluoro- $3\hat{a} \in \hat{a}$ -Thiacytidine (Emtricitabine) in Chronically Infected Woodchucks. Antiviral Chemistry and Chemotherapy, 2002, 13, 165-176.	0.3	2
301	N 4-Hydroxycytosine Dioxolane Nucleosides and Their Activity Against Hepatitis B Virus. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1209-1214.	0.4	2
302	Variation of Human Immunodeficiency Virus Type-1 Reverse Transcriptase within the Simian Immunodeficiency Virus Genome of RT-SHIV. PLoS ONE, 2014, 9, e86997.	1.1	2
303	Design, synthesis and evaluation of novel anti-HCV molecules that deliver intracellularly three highly potent NS5A inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3711-3715.	1.0	2
304	Synthesis and antiviral evaluation of fluorinated acyclo-nucleosides and their phosphoramidates. Nucleosides, Nucleotides and Nucleic Acids, 2017, 36, 66-82.	0.4	2
305	Synthesis of 7-trifluoromethyl-7-deazapurine ribonucleoside analogs and their monophosphate prodrugs. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 671-687.	0.4	2
306	Enhanced enzyme kinetics of reverse transcriptase variants cloned from animals infected with SIVmac239 lacking viral protein X. Journal of Biological Chemistry, 2020, 295, 16975-16986.	1.6	2

#	Article	IF	Citations
307	Novel method to quantify phenotypic markers of HIV-associated neurocognitive disorder in a murine SCID model. Journal of NeuroVirology, 2020, 26, 838-845.	1.0	2
308	The Base Component of $3\hat{a}\in^2$ -Azido- $2\hat{a}\in^2$, $3\hat{a}\in^2$ -Dideoxynucleosides Influences Resistance Mutations Selected in HIV-1 Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 2011, 55, 3758-3764.	1.4	1
309	Response to Correspondence: Baricitinib: Impact on Coronavirus Disease 2019 (COVID-19) Coagulopathy? Jorgensen et al. Clinical Infectious Diseases, 2020, 73, e3980-e3981.	2.9	1
310	Design, antihuman immunodeficiency activity and molecular docking studies of synthesized 2-aryl and 2-pyrimidinyl pyrrolidines. Molecular Diversity, 2021, 25, 2045-2052.	2.1	1
311	Pharmacokinetics of Ruxolitinib in HIV Suppressed Individuals on Antiretroviral Agent Therapy from the ACTG A5336 Study. Journal of Clinical Pharmacology, 2021, 61, 1555-1566.	1.0	1
312	Expression, Purification and Characterization of a GII.4 Norovirus Protease from Minerva Virus. Infectious Disorders - Drug Targets, 2018, 18, 224-232.	0.4	1
313	Diastereoselective Synthesis of 2′-Dihalopyrimidine Ribonucleoside Inhibitors of Hepatitis C Virus Replication. ACS Omega, 2022, 7, 1452-1461.	1.6	1
314	HIV latency reversal research and the potential effects on the central nervous system: is concern warranted?. Journal of the International AIDS Society, 2016, 19, 21008.	1.2	0
315	A new oxygen modification cyclooctaoxygen binds to nucleic acids as sodium crown complex. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 785-794.	1.1	O
316	Response to Correspondence: Baricitinib as Treatment of COVID-19 Friend or Foe of the Pancreas? Cerda-Contreras et.al. Clinical Infectious Diseases, 2020, 73, e3978-e3979.	2.9	0
317	CD81 receptor expression in human cells. , 2003, , 485-492.		0
318	<i>In silico</i> design of a novel nucleotide antiviral agent by free energy perturbation. Chemical Biology and Drug Design, 2022, , .	1.5	0
319	Identification of Botanical Viral Entry Inhibitors for SARSâ€CoVâ€2. FASEB Journal, 2022, 36, .	0.2	0