
Barrie Peck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5596291/publications.pdf Version: 2024-02-01

RADDIE DECK

#	Article	IF	CITATIONS
1	3D Functional Genomics Screens Identify CREBBP as a Targetable Driver in Aggressive Triple-Negative Breast Cancer. Cancer Research, 2021, 81, 847-859.	0.4	7
2	Adipocytes disrupt the translational programme of acute lymphoblastic leukaemia to favour tumour survival and persistence. Nature Communications, 2021, 12, 5507.	5.8	15
3	A micronutrient with major effects on cancer cell viability. Nature Metabolism, 2020, 2, 564-565.	5.1	1
4	Lipid Metabolism at the Nexus of Diet and Tumor Microenvironment. Trends in Cancer, 2019, 5, 693-703.	3.8	90
5	3D Growth of Cancer Cells Elicits Sensitivity to Kinase Inhibitors but Not Lipid Metabolism Modifiers. Molecular Cancer Therapeutics, 2019, 18, 376-388.	1.9	17
6	The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene, 2018, 37, 5435-5450.	2.6	239
7	Threeâ€dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic <scp>MCF10</scp> model. Journal of Pathology, 2016, 240, 315-328.	2.1	35
8	Utilizing Functional Genomics Screening to Identify Potentially Novel Drug Targets in Cancer Cell Spheroid Cultures. Journal of Visualized Experiments, 2016, , .	0.2	6
9	Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer & Metabolism, 2016, 4, 6.	2.4	186
10	Lipid desaturation – the next step in targeting lipogenesis in cancer?. FEBS Journal, 2016, 283, 2767-2778.	2.2	152
11	Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress. Cancer Cell, 2015, 27, 57-71.	7.7	596
12	SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme. Oncogene, 2015, 34, 5128-5140.	2.6	175
13	Fatty Acid Uptake and Lipid Storage Induced by HIF-1α Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation. Cell Reports, 2014, 9, 349-365.	2.9	498
14	Cholesteryl Esters: Fueling the Fury of Prostate Cancer. Cell Metabolism, 2014, 19, 350-352.	7.2	23
15	Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer & Metabolism, 2013, 1, 3.	2.4	207
16	Antagonism between FOXO and MYC Regulates Cellular Powerhouse. Frontiers in Oncology, 2013, 3, 96.	1.3	69
17	Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. DMM Disease Models and Mechanisms, 2013, 6, 1353-1363.	1.2	609
18	FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death and Differentiation, 2012, 19, 968-979.	5.0	235

BARRIE PECK

#	Article	IF	CITATIONS
19	A role for the cancer-associated miR-106b~25 cluster in neuronal stem cells. Aging, 2011, 3, 329-331.	1.4	10
20	FOXM1 Confers Acquired Cisplatin Resistance in Breast Cancer Cells. Molecular Cancer Research, 2010, 8, 24-34.	1.5	172
21	SIRT Inhibitors Induce Cell Death and p53 Acetylation through Targeting Both SIRT1 and SIRT2. Molecular Cancer Therapeutics, 2010, 9, 844-855.	1.9	372
22	Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Molecular Cancer Therapeutics, 2009, 8, 582-591.	1.9	115
23	FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. International Journal of Oncology, 2009, 35, 57-68.	1.4	77