Jose L Bonet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5596138/publications.pdf Version: 2024-02-01

LOSE L RONET

#	Article	IF	CITATIONS
1	Cyclic response of precast column-to-foundation connection using UHPC and Ni Ti SMA reinforcements in columns. Engineering Structures, 2022, 252, 113624.	2.6	9
2	Experimental study on the shear strength of reinforced concrete composite T-shaped beams with web reinforcement. Engineering Structures, 2022, 255, 113921.	2.6	5
3	Behaviour of retrofited precast UHPC and Ni-Ti SMA column-to-foundation connection with CFRP wrapping layers. Construction and Building Materials, 2022, 323, 126536.	3.2	1
4	Experimental analysis of the shear strength of composite concrete beams without web reinforcement. Engineering Structures, 2021, 229, 111664.	2.6	13
5	Analysis of the shear strength mechanism of slender precast concrete beams with cast-in-place slab and web reinforcement. Engineering Structures, 2021, 246, 113043.	2.6	4
6	Experimental study of shear strength in continuous reinforced concrete beams with and without shear reinforcement. Engineering Structures, 2020, 220, 110967.	2.6	8
7	Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement. Engineering Structures, 2020, 207, 110242.	2.6	6
8	Improving the seismic behaviour of reinforced concrete moment resisting frames by means of SMA bars and ultra-high performance concrete. Engineering Structures, 2019, 197, 109409.	2.6	9
9	Experimental analysis of longitudinal shear between the web and flanges of T-beams made of fibre-reinforced concrete. Engineering Structures, 2019, 196, 109280.	2.6	3
10	Cyclic behavior of hybrid RC columns using High-Performance Fiber-Reinforced Concrete and Ni-Ti SMA bars in critical regions. Composite Structures, 2019, 212, 207-219.	3.1	22
11	Required tie spacing to prevent inelastic local buckling of longitudinal reinforcements in RC and FRC elements. Engineering Structures, 2018, 160, 328-341.	2.6	6
12	Buckling of steel and Ni-Ti reinforcements in very high performance concrete (VHPC) elements. Construction and Building Materials, 2018, 160, 551-563.	3.2	7
13	Ductility of high-performance concrete and very-high-performance concrete elements with Ni-Ti reinforcements. Construction and Building Materials, 2018, 175, 531-551.	3.2	11
14	Ni-Ti SMA bars behaviour under compression. Construction and Building Materials, 2017, 155, 348-362.	3.2	23
15	Mixed model for the analytical determination of critical buckling load of passive reinforcement in compressed RC and FRC elements under monotonic loading. Engineering Structures, 2017, 150, 76-90.	2.6	10
16	Cm-factor for RC slender columns under unequal eccentricities and skew angle loads at the ends. Engineering Structures, 2014, 71, 73-87.	2.6	4
17	Experimental research on high strength concrete slender columns subjected to compression and uniaxial bending with unequal eccentricities at the ends. Engineering Structures, 2013, 48, 220-232.	2.6	19
18	A simplified method to predict the ultimate shear stress of reinforced concrete membrane elements. Engineering Structures, 2013, 49, 329-344.	2.6	5

Jose L Bonet

#	Article	IF	CITATIONS
19	An experimental study of steel fiber-reinforced high-strength concrete slender columns under cyclic loading. Engineering Structures, 2013, 57, 565-577.	2.6	32
20	Influence of Slenderness on High-Strength Rectangular Concrete-Filled Tubular Columns with Axial Load and Nonconstant Bending Moment. Journal of Structural Engineering, 2012, 138, 1436-1445.	1.7	18
21	Effects of concrete composition on transmission length of prestressing strands. Construction and Building Materials, 2012, 27, 350-356.	3.2	47
22	Behaviour of steel-fibre-reinforced normal-strength concrete slender columns under cyclic loading. Engineering Structures, 2012, 39, 162-175.	2.6	30
23	Behavior of RC slender columns under unequal eccentricities and skew angle loads at the ends. Engineering Structures, 2012, 40, 254-266.	2.6	6
24	Ductility of slender reinforced concrete columns under monotonic flexure and constant axial load. Engineering Structures, 2012, 40, 398-412.	2.6	28
25	Ultimate capacity of rectangular concrete-filled steel tubular columns under unequal load eccentricities. Journal of Constructional Steel Research, 2012, 68, 107-117.	1.7	29
26	Experimental tests of slender reinforced concrete columns under combined axial load and lateral force. Engineering Structures, 2011, 33, 3676-3689.	2.6	59
27	Effective flexural stiffness of slender reinforced concrete columns under axial forces and biaxial bending. Engineering Structures, 2011, 33, 881-893.	2.6	41
28	Slenderness limit of the weak axis in the design of rectangular reinforced concrete non-sway columns. Engineering Structures, 2011, 33, 1157-1165.	2.6	2
29	Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns. Engineering Structures, 2011, 33, 1576-1593.	2.6	50
30	Experimental study of high strength concrete-filled circular tubular columns under eccentric loading. Journal of Constructional Steel Research, 2011, 67, 623-633.	1.7	111
31	The influence of the weak axis on the behavior of high strength RC slender columns subjected to biaxial bending. Engineering Structures, 2009, 31, 487-497.	2.6	7
32	<mml:math <br="" altimg="si161.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>mfactor for non-uniform moment diagram in RC columns. Engineering Structures, 2009, 31, 1589-1599.</mml:mi></mml:mrow></mml:msub></mml:math>	nl:m2i,x6 <td>ml:រោទrow></td>	ml:រោទrow>
33	Inelastic Effective Length Factor of Nonsway Reinforced Concrete Columns. Journal of Structural Engineering, 2009, 135, 1034-1039.	1.7	3
34	Experimental research on high strength concrete slender columns subjected to compression and biaxial bending forces. Engineering Structures, 2008, 30, 1879-1894.	2.6	34
35	Design method for slender columns subjected to biaxial bending based on second-order eccentricity. Magazine of Concrete Research, 2007, 59, 3-19.	0.9	7
36	Comparative study of analytical and numerical algorithms for designing reinforced concrete sections under biaxial bending. Computers and Structures, 2006, 84, 2184-2193.	2.4	47

Jose L Bonet

			0
#	ARTICLE	IF	CITATIONS
37	Capacity of RC rectangular sections subjected to biaxial bending: simplification to an increased uniaxial bending moment. Magazine of Concrete Research, 2005, 57, 469-483.	0.9	0
38	Biaxial bending moment magnifier method. Engineering Structures, 2004, 26, 2007-2019.	2.6	15
39	A fast stress integration algorithm for reinforced concrete sections with axial loads and biaxial bending. Computers and Structures, 2004, 82, 213-225.	2.4	42
40	Analytical Approach to Failure Surfaces in Reinforced Concrete Sections Subjected to Axial Loads and Biaxial Bending. Journal of Structural Engineering, 2004, 130, 2006-2015.	1.7	24