List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5596128/publications.pdf Version: 2024-02-01

		71102	56724
126	7,684	41	83
papers	citations	h-index	g-index
100		100	0-10
132	132	132	8510
all docs	docs citations	times ranked	citing authors

FDDV I SMID

#	Article	IF	CITATIONS
1	Chronic Release of Tailless Phage Particles from Lactococcus lactis. Applied and Environmental Microbiology, 2022, 88, AEM0148321.	3.1	13
2	Bacterial microcompartments in food-related microbes. Current Opinion in Food Science, 2022, 43, 128-135.	8.0	4
3	Towards valorisation of indigenous traditional fermented milk: mabisi as a model. Current Opinion in Food Science, 2022, 46, 100835.	8.0	4
4	Extracellular vesicle formation in <i>Lactococcus lactis</i> is stimulated by prophageâ€encoded holin–lysin system. Microbial Biotechnology, 2022, 15, 1281-1295.	4.2	17
5	Physiological Roles of Short-Chain and Long-Chain Menaquinones (Vitamin K2) in Lactococcus cremoris. Frontiers in Microbiology, 2022, 13, 823623.	3.5	5
6	Pivotal role of cheese salting method for the production of 3â€methylbutanal by <i>Lactococcus lactis</i> . International Journal of Dairy Technology, 2022, 75, 421-430.	2.8	6
7	The growthâ€survival tradeâ€off is hardâ€wired in the <i>Lactococcus lactis</i> gene regulation network. Environmental Microbiology Reports, 2022, 14, 632-636.	2.4	6
8	Influence of fermentation temperature on microbial community composition and physicochemical properties of mabisi, a traditionally fermented milk. LWT - Food Science and Technology, 2021, 136, 110350.	5.2	23
9	Genomics of tailless bacteriophages in a complex lactic acid bacteria starter culture. International Dairy Journal, 2021, 114, 104900.	3.0	6
10	Cyclic di-AMP Oversight of Counter-Ion Osmolyte Pools Impacts Intrinsic Cefuroxime Resistance in Lactococcus lactis. MBio, 2021, 12, .	4.1	10
11	Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes. MSystems, 2021, 6, .	3.8	18
12	The cross-over fermentation concept and its application in a novel food product: The dairy miso case study. LWT - Food Science and Technology, 2021, 142, 111041.	5.2	13
13	Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization of Propionibacterium freudenreichii. Frontiers in Microbiology, 2021, 12, 679827.	3.5	9
14	<i>Propionibacterium freudenreichii</i> thrives in microaerobic conditions by complete oxidation of lactate to <scp>CO₂</scp> . Environmental Microbiology, 2021, 23, 3116-3129.	3.8	12
15	Contribution of traditional fermented foods to food systems transformation: value addition and inclusive entrepreneurship. Food Security, 2021, 13, 1163-1177.	5.3	20
16	Anaerobic Growth of <i>Listeria monocytogenes</i> on Rhamnose Is Stimulated by Vitamin B ₁₂ and Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization. MSphere, 2021, 6, e0043421.	2.9	5
17	Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods. International Journal of Environmental Research and Public Health, 2021, 18, 10093.	2.6	8
18	Signal-based optical map alignment. PLoS ONE, 2021, 16, e0253102.	2.5	1

#	Article	IF	CITATIONS
19	Nitrogenous Compound Utilization and Production of Volatile Organic Compounds among Commercial Wine Yeasts Highlight Strain-Specific Metabolic Diversity. Microbiology Spectrum, 2021, 9, e0048521.	3.0	11
20	Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts. Microbial Cell Factories, 2021, 20, 204.	4.0	14
21	Lactococcus lactis Mutants Obtained From Laboratory Evolution Showed Elevated Vitamin K2 Content and Enhanced Resistance to Oxidative Stress. Frontiers in Microbiology, 2021, 12, 746770.	3.5	9
22	Bacterial folate biosynthesis and colorectal cancer risk: more than just a gut feeling. Critical Reviews in Food Science and Nutrition, 2020, 60, 244-256.	10.3	39
23	Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation. Innovative Food Science and Emerging Technologies, 2020, 59, 102269.	5.6	67
24	Curation and Analysis of a Saccharomyces cerevisiae Genome-Scale Metabolic Model for Predicting Production of Sensory Impact Molecules under Enological Conditions. Processes, 2020, 8, 1195.	2.8	13
25	Lifestyle, metabolism and environmental adaptation in <i>Lactococcus lactis</i> . FEMS Microbiology Reviews, 2020, 44, 804-820.	8.6	29
26	Microbial population dynamics during traditional production of Mabisi, a spontaneous fermented milk product from Zambia: a field trial. World Journal of Microbiology and Biotechnology, 2020, 36, 184.	3.6	14
27	Composition and Diversity of Natural Bacterial Communities in Mabisi, a Traditionally Fermented Milk. Frontiers in Microbiology, 2020, 11, 1816.	3.5	20
28	Visualizing the invisible: class excursions to ignite children's enthusiasm for microbes. Microbial Biotechnology, 2020, 13, 844-887.	4.2	26
29	How processing methods affect the microbial community composition in a cereal-based fermented beverage. LWT - Food Science and Technology, 2020, 128, 109451.	5.2	10
30	Delivery of genome editing tools by bacterial extracellular vesicles. Microbial Biotechnology, 2019, 12, 71-73.	4.2	12
31	Long-chain vitamin K2 production in Lactococcus lactis is influenced by temperature, carbon source, aeration and mode of energy metabolism. Microbial Cell Factories, 2019, 18, 129.	4.0	31
32	Fermented cereal-based Munkoyo beverage: Processing practices, microbial diversity and aroma compounds. PLoS ONE, 2019, 14, e0223501.	2.5	35
33	Development of A Low-Alcoholic Fermented Beverage Employing Cashew Apple Juice and Non-Conventional Yeasts. Fermentation, 2019, 5, 71.	3.0	18
34	Acetate-ester hydrolase activity for screening of the variation in acetate ester yield of Cyberlindnera fabianii, Pichia kudriavzevii and Saccharomyces cerevisiae. LWT - Food Science and Technology, 2019, 104, 8-15.	5.2	15
35	Dynamic modelling of brewers' yeast and Cyberlindnera fabianii co-culture behaviour for steering fermentation performance. Food Microbiology, 2019, 83, 113-121.	4.2	8
36	Bacterial community dynamics in lait caillé, a traditional product of spontaneous fermentation from Senegal. PLoS ONE, 2019, 14, e0215658.	2.5	12

#	Article	IF	CITATIONS
37	The art of mabisi production: A traditional fermented milk. PLoS ONE, 2019, 14, e0213541.	2.5	28
38	Robust sampling and preservation of DNA for microbial community profiling in field experiments. BMC Research Notes, 2019, 12, 159.	1.4	2
39	Application of a partial cell recycling chemostat for continuous production of aroma compounds at near-zero growth rates. BMC Research Notes, 2019, 12, 173.	1.4	5
40	Aroma formation in retentostat co-cultures of Lactococcus lactis and Leuconostoc mesenteroides. Food Microbiology, 2019, 82, 151-159.	4.2	19
41	Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization Stimulates Anaerobic Growth of Listeria monocytogenes EGDe. Frontiers in Microbiology, 2019, 10, 2660.	3.5	22
42	Title is missing!. , 2019, 14, e0223501.		0
43	Title is missing!. , 2019, 14, e0223501.		0
44	Title is missing!. , 2019, 14, e0223501.		0
45	Title is missing!. , 2019, 14, e0223501.		0
46	Role of cell surface composition and lysis in static biofilm formation by Lactobacillus plantarum WCFS1. International Journal of Food Microbiology, 2018, 271, 15-23.	4.7	11
47	Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates. Food Microbiology, 2018, 73, 216-226.	4.2	38
48	Dynamics in Copy Numbers of Five Plasmids of a Dairy Lactococcus lactis Strain under Dairy-Related Conditions Including Near-Zero Growth Rates. Applied and Environmental Microbiology, 2018, 84, .	3.1	2
49	Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT - Food Science and Technology, 2018, 90, 201-206.	5.2	79
50	Citrate, low pH and amino acid limitation induce citrate utilization in <i>Lactococcus lactis</i> biovar diacetylactis. Microbial Biotechnology, 2018, 11, 369-380.	4.2	24
51	Contribution of Eat1 and Other Alcohol Acyltransferases to Ester Production in Saccharomyces cerevisiae. Frontiers in Microbiology, 2018, 9, 3202.	3.5	25
52	CRISPR-Cas genome engineering of esterase activity in Saccharomyces cerevisiae steers aroma formation. BMC Research Notes, 2018, 11, 682.	1.4	17
53	Aroma formation during cheese ripening is best resembled by Lactococcus lactis retentostat cultures. Microbial Cell Factories, 2018, 17, 104.	4.0	26
54	Spontaneously induced prophages are abundant in a naturally evolved bacterial starter culture and deliver competitive advantage to the host. BMC Microbiology, 2018, 18, 120.	3.3	42

#	Article	IF	CITATIONS
55	Enhancing vitamin B12 in lupin tempeh by in situ fortification. LWT - Food Science and Technology, 2018, 96, 513-518.	5.2	51
56	Gram-Positive Bacterial Extracellular Vesicles and Their Impact on Health and Disease. Frontiers in Microbiology, 2018, 9, 1502.	3.5	191
57	Large plasmidome of dairy Lactococcus lactis subsp. lactis biovar diacetylactis FM03P encodes technological functions and appears highly unstable. BMC Genomics, 2018, 19, 620.	2.8	40
58	Tiny but mighty: bacterial membrane vesicles in food biotechnological applications. Current Opinion in Biotechnology, 2018, 49, 179-184.	6.6	20
59	Genome Sequences of Cyberlindnera fabianii 65, Pichia kudriavzevii 129, and Saccharomyces cerevisiae 131 Isolated from Fermented Masau Fruits in Zimbabwe. Genome Announcements, 2017, 5, .	0.8	9
60	Quantitative assessment of viable cells of Lactobacillus plantarum strains in single, dual and multi-strain biofilms. International Journal of Food Microbiology, 2017, 244, 43-51.	4.7	7
61	Health benefits of fermented foods: microbiota and beyond. Current Opinion in Biotechnology, 2017, 44, 94-102.	6.6	855
62	Performance of nonâ€conventional yeasts in coâ€culture with brewers' yeast for steering ethanol and aroma production. Microbial Biotechnology, 2017, 10, 1591-1602.	4.2	63
63	Editorial: Lactic acid bacteria—a continuing journey in science and application. FEMS Microbiology Reviews, 2017, 41, S1-S2.	8.6	11
64	Isolation and characterization of Lactobacillus helveticus DSM 20075 variants with improved autolytic capacity. International Journal of Food Microbiology, 2017, 241, 173-180.	4.7	13
65	Metabolomics as an Emerging Strategy for the Investigation of Yogurt Components. , 2017, , 427-449.		6
66	Complete Genome Sequences of Lactococcus lactis subsp. <i>lactis</i> bv. diacetylactis FM03 and Leuconostoc mesenteroides FM06 Isolated from Cheese. Genome Announcements, 2017, 5, .	0.8	6
67	Occurrence of Aspergillus section Flavi and section Nigri and aflatoxins in raw cashew kernels (Anacardium occidentale L.) from Benin. LWT - Food Science and Technology, 2016, 70, 71-77.	5.2	14
68	Use of propidium monoazide for selective profiling of viable microbial cells during Gouda cheese ripening. International Journal of Food Microbiology, 2016, 228, 1-9.	4.7	50
69	Influence of Lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt. Food Microbiology, 2016, 59, 14-22.	4.2	45
70	Inactivation of bacterial pathogens in yoba mutandabota, a dairy product fermented with the probiotic Lactobacillus rhamnosus yoba. International Journal of Food Microbiology, 2016, 217, 42-48.	4.7	26
71	Diversity in Secondary Metabolites Including Mycotoxins from Strains of Aspergillus Section Nigri Isolated from Raw Cashew Nuts from Benin, West Africa. PLoS ONE, 2016, 11, e0164310.	2.5	25
72	Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates. International Journal of Food Microbiology, 2015, 207, 23-29.	4.7	66

#	Article	IF	CITATIONS
73	Genome-Wide Transcriptional Responses to Carbon Starvation in Nongrowing Lactococcus lactis. Applied and Environmental Microbiology, 2015, 81, 2554-2561.	3.1	19
74	Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates. Applied and Environmental Microbiology, 2015, 81, 5662-5670.	3.1	42
75	Strain diversity and phage resistance in complex dairy starter cultures. Journal of Dairy Science, 2015, 98, 5173-5182.	3.4	26
76	Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt. Food Microbiology, 2015, 49, 104-115.	4.2	39
77	Characterization of the microbial community in different types of Daqu samples as revealed by 16S rRNA and 26S rRNA gene clone libraries. World Journal of Microbiology and Biotechnology, 2015, 31, 199-208.	3.6	98
78	Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates. Applied and Environmental Microbiology, 2015, 81, 320-331.	3.1	18
79	Functional implications of the microbial community structure of undefined mesophilic starter cultures. Microbial Cell Factories, 2014, 13, S2.	4.0	93
80	Microbiota dynamics related to environmental conditions during the fermentative production of Fen-Daqu, a Chinese industrial fermentation starter. International Journal of Food Microbiology, 2014, 182-183, 57-62.	4.7	98
81	Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. International Journal of Food Microbiology, 2014, 177, 29-36.	4.7	167
82	Development of a locally sustainable functional food based on mutandabota, a traditional food in southern Africa. Journal of Dairy Science, 2014, 97, 2591-2599.	3.4	26
83	Nutrient limitation leads to penetrative growth into agar and affects aroma formation in <i>Pichia fabianii</i> , <i>Pichia kudriavzevii</i> and <i>Saccharomyces cerevisiae</i> . Yeast, 2014, 32, n/a-n/a.	1.7	11
84	Mutandabota, a Food Product from Zimbabwe: Processing, Composition, and Socioeconomic Aspects. Ecology of Food and Nutrition, 2014, 53, 24-41.	1.6	15
85	The impact of selected strains of probiotic bacteria on metabolite formation in set yoghurt. International Dairy Journal, 2014, 38, 1-10.	3.0	45
86	Multifactorial diversity sustains microbial community stability. ISME Journal, 2013, 7, 2126-2136.	9.8	176
87	Fermentation characteristics of yeasts isolated from traditionally fermented masau (Ziziphus) Tj ETQq1 1 0.784	314 rgBT / 4.9	Overlock 10
88	Microbe–microbe interactions in mixed culture food fermentations. Current Opinion in Biotechnology, 2013, 24, 148-154.	6.6	227
89	Nutritive value of masau (Ziziphus mauritiana) fruits from Zambezi Valley in Zimbabwe. Food Chemistry, 2013, 138, 168-172.	8.2	43
90	Quantitative physiology of <i><scp>L</scp>actococcus lactis</i> at extreme lowâ€growth rates. Environmental Microbiology, 2013, 15, 2319-2332.	3.8	18

#	Article	IF	CITATIONS
91	Diversity of human small intestinal <i>Streptococcus</i> and <i>Veillonella</i> populations. FEMS Microbiology Ecology, 2013, 85, 376-388.	2.7	121
92	Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures. Applied and Environmental Microbiology, 2013, 79, 5949-5961.	3.1	50
93	Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem. PLoS ONE, 2013, 8, e83418.	2.5	57
94	Comparative Analysis of Lactobacillus plantarum WCFS1 Transcriptomes by Using DNA Microarray and Next-Generation Sequencing Technologies. Applied and Environmental Microbiology, 2012, 78, 4141-4148.	3.1	24
95	Yeasts preservation: alternatives for lyophilisation. World Journal of Microbiology and Biotechnology, 2012, 28, 3239-3244.	3.6	13
96	High-Resolution Amplified Fragment Length Polymorphism Typing of Lactococcus lactis Strains Enables Identification of Genetic Markers for Subspecies-Related Phenotypes. Applied and Environmental Microbiology, 2011, 77, 5192-5198.	3.1	21
97	Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1. Microbial Cell Factories, 2010, 9, 100.	4.0	19
98	Understanding the Adaptive Growth Strategy of Lactobacillus plantarum by In Silico Optimisation. PLoS Computational Biology, 2009, 5, e1000410.	3.2	119
99	Bacterial vitamin B2, B11 and B12 overproduction: An overview. International Journal of Food Microbiology, 2009, 133, 1-7.	4.7	140
100	Folate overproduction in <i>Lactobacillus plantarum</i> WCFS1 causes methotrexate resistance. FEMS Microbiology Letters, 2009, 297, 261-265.	1.8	15
101	High-Level Folate Production in Fermented Foods by the B ₁₂ Producer <i>Lactobacillus reuteri</i> JCM1112. Applied and Environmental Microbiology, 2008, 74, 3291-3294.	3.1	131
102	Improvement of <i>Lactobacillus plantarum</i> Aerobic Growth as Directed by Comprehensive Transcriptome Analysis. Applied and Environmental Microbiology, 2008, 74, 4776-4778.	3.1	49
103	High-Level Production of the Low-Calorie Sugar Sorbitol by Lactobacillus plantarum through Metabolic Engineering. Applied and Environmental Microbiology, 2007, 73, 1864-1872.	3.1	108
104	Characterization of the Role of para-Aminobenzoic Acid Biosynthesis in Folate Production by Lactococcus lactis. Applied and Environmental Microbiology, 2007, 73, 2673-2681.	3.1	110
105	A general method for selection of riboflavin-overproducing food grade micro-organisms. Microbial Cell Factories, 2006, 5, 24.	4.0	119
106	Modelling strategies for the industrial exploitation of lactic acid bacteria. Nature Reviews Microbiology, 2006, 4, 46-56.	28.6	126
107	Getting high (OD) on heme. Nature Reviews Microbiology, 2006, 4, 318-318.	28.6	0
108	A novel dairy product fermented with Propionibacterium freudenreichii improves the riboflavin status of deficient rats. Nutrition, 2006, 22, 645-651.	2.4	70

#	Article	IF	CITATIONS
109	Analysis of Growth of Lactobacillus plantarum WCFS1 on a Complex Medium Using a Genome-scale Metabolic Model. Journal of Biological Chemistry, 2006, 281, 40041-40048.	3.4	261
110	Functional ingredient production: application of global metabolic models. Current Opinion in Biotechnology, 2005, 16, 190-197.	6.6	35
111	In Silico Reconstruction of the Metabolic Pathways of Lactobacillus plantarum : Comparing Predictions of Nutrient Requirements with Those from Growth Experiments. Applied and Environmental Microbiology, 2005, 71, 7253-7262.	3.1	176
112	Resistance of Gram-positive bacteria to nisin is not determined by Lipid II levels. FEMS Microbiology Letters, 2004, 239, 157-161.	1.8	95
113	Bioenergetic consequences of nisin combined with carvacrol towards Bacillus cereus. Innovative Food Science and Emerging Technologies, 2002, 3, 55-61.	5.6	24
114	Nutraceutical production with food-grade microorganisms. Current Opinion in Biotechnology, 2002, 13, 497-507.	6.6	142
115	Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek, 2002, 82, 217-35.	1.7	29
116	Influence of Food Matrix on Inactivation of Bacillus cereus by Combinations of Nisin, Pulsed Electric Field Treatment, and Carvacrol. Journal of Food Protection, 2001, 64, 1012-1018.	1.7	82
117	Superoxide dismutase plays an important role in the survival of Lactobacillus sake upon exposure to elevated oxygen. Archives of Microbiology, 2001, 176, 79-88.	2.2	35
118	Antioxidative properties ofLactobacillus sakeupon exposure to elevated oxygen concentrations. FEMS Microbiology Letters, 2001, 203, 87-94.	1.8	53
119	Sensitivities of Germinating Spores and Carvacrol-Adapted Vegetative Cells and Spores of Bacillus cereus to Nisin and Pulsed-Electric-Field Treatment. Applied and Environmental Microbiology, 2001, 67, 1693-1699.	3.1	71
120	Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Archives of Microbiology, 2000, 174, 233-238.	2.2	235
121	Pulsed-Electric Field Treatment Enhances the Bactericidal Action of Nisin against <i>Bacillus cereus</i> . Applied and Environmental Microbiology, 2000, 66, 428-430.	3.1	105
122	Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria. Journal of Agricultural and Food Chemistry, 1998, 46, 3590-3595.	5.2	1,260
123	Microbiology of minimally processed, modified-atmosphere packaged chicory endive. Postharvest Biology and Technology, 1996, 9, 209-221.	6.0	75
124	Secondary plant metabolites as control agents of postharvest Penicillium rot on tulip bulbs. Postharvest Biology and Technology, 1995, 6, 303-312.	6.0	49
125	Anaerobic Nitrate Respiration by Erwinia carotovora subsp. atroseptica during Potato Tuber Invasion. Applied and Environmental Microbiology, 1993, 59, 3648-3653.	3.1	21
126	Monoclonal Antibodies to the Cell-Wall-Associated Proteinase of <i>Lactococcus lactis</i> subsp. <i>cremoris</i> Wg2. Applied and Environmental Microbiology, 1988, 54, 2250-2256.	3.1	32