List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5595995/publications.pdf Version: 2024-02-01

Τετςιιακι Ειπιμαρα

#	Article	IF	CITATIONS
1	Carbon dioxide as a carbon source in organic transformation: carbon–carbon bond forming reactions by transition-metal catalysts. Chemical Communications, 2012, 48, 9956.	4.1	498
2	Copperâ€Catalyzed Hydrocarboxylation of Alkynes Using Carbon Dioxide and Hydrosilanes. Angewandte Chemie - International Edition, 2011, 50, 523-527.	13.8	313
3	Nickel-Catalyzed Carboxylation of Aryl and Vinyl Chlorides Employing Carbon Dioxide. Journal of the American Chemical Society, 2012, 134, 9106-9109.	13.7	308
4	Copper-catalyzed borylative transformations of non-polar carbon–carbon unsaturated compounds employing borylcopper as an active catalyst species. Tetrahedron, 2015, 71, 2183-2197.	1.9	272
5	Highly Selective Copperâ€Catalyzed Hydroboration of Allenes and 1,3â€Dienes. Chemistry - A European Journal, 2013, 19, 7125-7132.	3.3	214
6	Copperâ€Catalyzed Highly Regio―and Stereoselective Directed Hydroboration of Unsymmetrical Internal Alkynes: Controlling Regioselectivity by Choice of Catalytic Species. Chemistry - A European Journal, 2012, 18, 4179-4184.	3.3	174
7	The iridium-catalyzed decarbonylation of aldehydes under mild conditions. Chemical Communications, 2008, , 6215.	4.1	148
8	Regioselective transformation of alkynes catalyzed by a copper hydride or boryl copper species. Catalysis Science and Technology, 2014, 4, 1699.	4.1	148
9	Copperâ€Catalyzed Silacarboxylation of Internal Alkynes by Employing Carbon Dioxide and Silylboranes. Angewandte Chemie - International Edition, 2012, 51, 11487-11490.	13.8	141
10	Copperâ€Catalyzed Highly Selective Semihydrogenation of Nonâ€Polar Carbonâ€Carbon Multiple Bonds using a Silane and an Alcohol. Advanced Synthesis and Catalysis, 2012, 354, 1542-1550.	4.3	137
11	Copper-Catalyzed Regiodivergent Silacarboxylation of Allenes with Carbon Dioxide and a Silylborane. Journal of the American Chemical Society, 2014, 136, 17706-17709.	13.7	128
12	Design principle for increasing charge mobility of π-conjugated polymers using regularly localized molecular orbitals. Nature Communications, 2013, 4, 1691.	12.8	115
13	Palladium-Catalyzed Intermolecular Addition of Formamides to Alkynes. Journal of the American Chemical Society, 2010, 132, 2094-2098.	13.7	109
14	Synthesis of Organic-Soluble Conjugated Polyrotaxanes by Polymerization of Linked Rotaxanes. Journal of the American Chemical Society, 2009, 131, 16004-16005.	13.7	104
15	Palladium-catalyzed esterification of aryl halides using aryl formates without the use of external carbon monoxide. Chemical Communications, 2012, 48, 8012.	4.1	102
16	Boraformylation and Silaformylation of Allenes. Angewandte Chemie - International Edition, 2017, 56, 1539-1543.	13.8	102
17	Phosphines Having a 2,3,4,5-Tetraphenylphenyl Moiety:Â Effective Ligands in Palladium-Catalyzed Transformations of Aryl Chlorides. Organometallics, 2006, 25, 4665-4669.	2.3	101
18	Copperâ€Catalyzed Borylative Allyl–Allyl Coupling Reaction. Angewandte Chemie - International Edition, 2014, 53, 9007-9011.	13.8	99

#	Article	IF	CITATIONS
19	Iridium-Catalyzed Addition of Acid Chlorides to Terminal Alkynes. Journal of the American Chemical Society, 2009, 131, 6668-6669.	13.7	97
20	Nickel-Catalyzed Double Carboxylation of Alkynes Employing Carbon Dioxide. Organic Letters, 2014, 16, 4960-4963.	4.6	96
21	Palladium atalyzed Hydroesterification of Alkynes Employing Aryl Formates without the Use of External Carbon Monoxide. Advanced Synthesis and Catalysis, 2011, 353, 475-482.	4.3	95
22	Copperâ€Catalyzed Borylation of αâ€Alkoxy Allenes with Bis(pinacolato)diboron: Efficient Synthesis of 2â€Boryl 1,3â€Butadienes. Angewandte Chemie - International Edition, 2013, 52, 12400-12403.	13.8	94
23	Iridium-Catalyzed Annulation of <i>N</i> -Arylcarbamoyl Chlorides with Internal Alkynes. Journal of the American Chemical Society, 2010, 132, 9602-9603.	13.7	92
24	Carboxyzincation Employing Carbon Dioxide and Zinc Powder: Cobalt-Catalyzed Multicomponent Coupling Reactions with Alkynes. Journal of the American Chemical Society, 2016, 138, 5547-5550.	13.7	90
25	Copperâ€Catalyzed Hydrosilylation with a Bowlâ€Shaped Phosphane Ligand: Preferential Reduction of a Bulky Ketone in the Presence of an Aldehyde. Angewandte Chemie - International Edition, 2010, 49, 1472-1476.	13.8	89
26	A Bowl-Shaped Phosphine as a Ligand in Palladium-Catalyzed Suzukiâ^'Miyaura Coupling of Aryl Chlorides:Â Effect of the Depth of the Bowl. Organic Letters, 2007, 9, 89-92.	4.6	88
27	Triarylphosphanes with Dendritically Arranged Tetraethylene Glycol Moieties at the Periphery: An Efficient Ligand for the Palladium atalyzed Suzuki–Miyaura Coupling Reaction. Angewandte Chemie - International Edition, 2008, 47, 8310-8314.	13.8	85
28	Cobalt- and Nickel-Catalyzed Carboxylation of Alkenyl and Sterically Hindered Aryl Triflates Utilizing CO ₂ . Journal of Organic Chemistry, 2015, 80, 11618-11623.	3.2	82
29	Homogeneous Nanosize Palladium Catalysts. Inorganic Chemistry, 2007, 46, 1895-1902.	4.0	78
30	Synthesis of One-Dimensional Metal-Containing Insulated Molecular Wire with Versatile Properties Directed toward Molecular Electronics Materials. Journal of the American Chemical Society, 2014, 136, 1742-1745.	13.7	77
31	Cobalt-catalyzed carboxylation of propargyl acetates with carbon dioxide. Chemical Communications, 2014, 50, 13052-13055.	4.1	72
32	A Triarylphosphine Ligand Bearing Dodeca(ethylene glycol) Chains: Enhanced Efficiency in the Palladium-Catalyzed Suzukiâ°'Miyaura Coupling Reaction. Organic Letters, 2009, 11, 2121-2124.	4.6	70
33	Dendrimer N-heterocyclic carbene complexes with rhodium(i) at the core. Chemical Communications, 2005, , 4526.	4.1	64
34	Copper atalyzed Transformations Using Cu–H, Cu–B, and Cu–Si as Active Catalyst Species. Chemical Record, 2016, 16, 2294-2313.	5.8	64
35	N-Heterocyclic carbeneligands bearing hydrophilic and/or hydrophobic chains: Rh(<scp>i</scp>) and Pd(<scp>ii</scp>) complexes and their catalytic activity. Dalton Transactions, 2008, , 379-385.	3.3	63
36	Copper-catalyzed C–C bond-forming transformation of CO ₂ to alcohol oxidation level: selective synthesis of homoallylic alcohols from allenes, CO ₂ , and hydrosilanes. Chemical Communications, 2015, 51, 13020-13023.	4.1	63

#	Article	IF	CITATIONS
37	Iridium-Catalyzed Addition of Aroyl Chlorides and Aliphatic Acid Chlorides to Terminal Alkynes. Journal of the American Chemical Society, 2012, 134, 1268-1274.	13.7	62
38	Enhancement of Phosphorescence and Unimolecular Behavior in the Solid State by Perfect Insulation of Platinum–Acetylide Polymers. Journal of the American Chemical Society, 2014, 136, 14714-14717.	13.7	58
39	Cu-Catalyzed Borylative and Silylative Transformations of Allenes: Use of β-Functionalized Allyl Copper Intermediates in Organic Synthesis. Synthesis, 2018, 50, 1737-1749.	2.3	57
40	Coordination ability of 1,10-phenanthroline-5,6-dione: syntheses and redox behavior of a Ru(ii) complex with an o-quinoid moiety and of bridged Ru(ii)–M(ii) complexes (M = Pd, Pt). Dalton Transactions, 2003, , 3221-3226.	3.3	43
41	Copperâ€Catalyzed Boraâ€Acylation and Boraâ€Alkoxyoxalylation of Allenes. Advanced Synthesis and Catalysis, 2018, 360, 2621-2625.	4.3	43
42	A Typical Metalâ€lonâ€Responsive Colorâ€Tunable Emitting Insulated Ï€â€Conjugated Polymer Film. Angewandte Chemie - International Edition, 2016, 55, 13427-13431.	13.8	42
43	Steric Effect of Carboxylate Ligands on Pdâ€Catalyzed Intramolecular C(sp ²)–H and C(sp ³)–H Arylation Reactions. Angewandte Chemie - International Edition, 2018, 57, 10314-10317.	13.8	40
44	Rhodium(i) complexes with N-heterocyclic carbenes bearing a 2,3,4,5-tetraphenylphenyl and its higher dendritic frameworks. Chemical Communications, 2007, , 269-271.	4.1	37
45	Experimental and Theoretical Evaluation of the Charge Distribution over the Ruthenium and Dioxolene Framework of [Ru(OAc)(dioxolene)(terpy)] (terpy = 2,2â€~;6â€~,2â€~Ââ€~-terpyridine) Depending on the Substituents. Inorganic Chemistry, 2006, 45, 8887-8894.	24.0	36
46	Synthesis of a head-to-tail-type cyclodextrin-based insulated molecular wire. Chemical Communications, 2011, 47, 6816.	4.1	34
47	Cobalt- and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source. Beilstein Journal of Organic Chemistry, 2018, 14, 2435-2460.	2.2	33
48	Carboxylation Reactions Using Carbon Dioxide as the C1 Source via Catalytically Generated Allyl Metal Intermediates. Frontiers in Chemistry, 2019, 7, 430.	3.6	33
49	Redox Behavior of New Ru–Dioxolene–Ammine Complexes and Catalytic Activity toward Electrochemical Oxidation of Alcohol under Mild Conditions. Chemistry Letters, 2004, 33, 1596-1597.	1.3	30
50	Synthesis of an insulated molecular wire by click polymerization. Chemical Communications, 2012, 48, 1577-1579.	4.1	30
51	Boraformylation and Silaformylation of Allenes. Angewandte Chemie, 2017, 129, 1561-1565.	2.0	29
52	Copper-catalyzed Silylative Allylation of Ketones and Aldehydes Employing Allenes and Silylboranes. Chemistry Letters, 2015, 44, 271-273.	1.3	28
53	Synthesis and Properties of Rhodium(III) Porphyrin Cyclic Tetramer and Cofacial Dimer. Inorganic Chemistry, 2003, 42, 3187-3193.	4.0	27
54	Rhodium(iii) complexes with a bidentate N-heterocyclic carbene ligand bearing flexible dendritic frameworks. Dalton Transactions, 2007, , 1567.	3.3	27

#	Article	IF	CITATIONS
55	Palladium atalyzed Reduction of Carboxylic Acids to Aldehydes with Hydrosilanes in the Presence of Pivalic Anhydride. Advanced Synthesis and Catalysis, 2013, 355, 3420-3424.	4.3	26
56	Palladium-Catalyzed Formal Hydroacylation of Allenes Employing Acid Chlorides and Hydrosilanes. Organic Letters, 2013, 15, 2286-2289.	4.6	25
57	Acid–base equilibria of various oxidation states of aqua–ruthenium complexes with 1,10-phenanthroline-5,6-dione in aqueous media. Dalton Transactions, 2004, , 645-652.	3.3	24
58	Insulated conjugated bimetallopolymer with sigmoidal response by dual self-controlling system as a biomimetic material. Nature Communications, 2020, 11, 408.	12.8	23
59	Ruthenium-catalyzed ring-closing metathesis accelerated by long-range steric effect. Chemical Communications, 2011, 47, 9699.	4.1	22
60	Rational Design for Rotaxane Synthesis through Intramolecular Slippage: Control of Activation Energy by Rigid Axle Length. Chemistry - A European Journal, 2016, 22, 6624-6630.	3.3	22
61	Strong Interaction between Carbonyl and Dioxolene Ligands Caused by Charge Distribution of Ruthenium–Dioxolene Frameworks of Mono- and Dicarbonylruthenium Complexes. Bulletin of the Chemical Society of Japan, 2004, 77, 741-749.	3.2	21
62	Synthesis of functionalized insulated molecular wires by polymerization of an insulated π-conjugated monomer. Chemical Communications, 2014, 50, 658-660.	4.1	20
63	Recent Development of Homogeneous Transition Metal Catalysts with Nanosize Ligands. Chemistry Letters, 2007, 36, 1296-1301.	1.3	18
64	Palladium-catalyzed formal hydroacylation of allenes employing carboxylic anhydrides and hydrosilanes. Tetrahedron, 2015, 71, 4570-4574.	1.9	18
65	Copper-catalyzed hydroallylation of allenes employing hydrosilanes and allyl chlorides. Chemical Communications, 2017, 53, 7898-7900.	4.1	17
66	Reversibility in the Formation of Oxo(peroxo)porphyrinatomolybdenums. Bulletin of the Chemical Society of Japan, 2000, 73, 383-390.	3.2	16
67	Synthesis of an organic-soluble π-conjugated [3]rotaxane via rotation of glucopyranose units in permethylated β-cyclodextrin. Beilstein Journal of Organic Chemistry, 2014, 10, 2800-2808.	2.2	16
68	Steric effect of carboxylic acid ligands on Pd-catalyzed C–H activation reactions. Catalysis Communications, 2016, 84, 71-74.	3.3	16
69	Synthesis of Linked Symmetric [3]Rotaxane Having an Oligomeric Phenylene–Ethynylene Unit as a π Guest via Double Sonogashira Cross-coupling. Chemistry Letters, 2010, 39, 518-519.	1.3	14
70	Synthesis of Insulated Pt–Alkynyl Complex Polymer. Chemistry Letters, 2012, 41, 652-653.	1.3	14
71	N-Heterocyclic carbene ligands bearing poly(ethylene glycol) chains: effect of the chain length on palladium-catalyzed coupling reactions employing aryl chlorides. Chemical Communications, 2015, 51, 17382-17385.	4.1	14
72	Programmed Synthesis of Molecular Wires with Fixed Insulation and Defined Length Based on Oligo(phenylene ethynylene) and Permethylated α yclodextrins. Chemistry - A European Journal, 2017, 23, 15073-15079.	3.3	14

#	Article	IF	CITATIONS
73	Kinetic stabilization of a Ni(<scp>ii</scp>) bis(dithiobenzoate)-type complex achieved using three-dimensional insulation by a [1]rotaxane structure. Chemical Communications, 2018, 54, 2487-2490.	4.1	13
74	Palladium-Catalyzed Reduction of Acid Chlorides to Aldehydes with Hydrosilanes. Synlett, 2012, 23, 2389-2392.	1.8	12
75	Pd-Catalyzed intermolecular C–H bond arylation reactions: effect of bulkiness of carboxylate ligands. Chemical Communications, 2020, 56, 3843-3846.	4.1	12
76	Syntheses and electrochemical properties of ruthenium(II) complexes with 4,4′-bipyrimidine and 4,4′-bipyrimidinium ligands. Inorganica Chimica Acta, 2004, 357, 1205-1212.	2.4	11
77	Cu-Catalyzed three-component coupling reactions using nitriles, 1,3-dienes and silylboranes. Chemical Communications, 2020, 56, 4648-4651.	4.1	11
78	Comparison of Basicity of the Diimine and Quinoid Group of 1,10-Phenanthroline-5,6-dione Ligated on Pt(II). Bulletin of the Chemical Society of Japan, 2006, 79, 106-112.	3.2	10
79	Palladium-catalyzed formal arylacylation of allenes employing acid chlorides and arylboronic acids. Chemical Communications, 2014, 50, 8476-8479.	4.1	10
80	Transition Metal-catalyzed Fixation of Carbon Dioxide <i>via</i> Carbon–carbon Bond Formation. Journal of the Japan Petroleum Institute, 2016, 59, 84-92.	0.6	10
81	Regio- and Stereoselective Synthesis of Triarylalkene-Capped Rotaxanes via Palladium-Catalyzed Tandem Sonogashira/Hydroaryl Reaction of Terminal Alkynes. Journal of Organic Chemistry, 2017, 82, 5449-5455.	3.2	10
82	Hetero Faceâ€ŧoâ€Face Porphyrin Array with Cooperative Effects of Coordination and Host–Guest Complexation. Chemistry - an Asian Journal, 2017, 12, 1900-1904.	3.3	10
83	Zinc-Catalyzed Synthesis of Acylsilanes Using Carboxylic Acids and a Silylborane in the Presence of Pivalic Anhydride. Organic Letters, 2019, 21, 10130-10133.	4.6	10
84	Complementary Color Tuning by HCl via Phosphorescence-to-Fluorescence Conversion on Insulated Metallopolymer Film and Its Light-Induced Acceleration. Polymers, 2020, 12, 244.	4.5	10
85	Synthesis, Properties, and Crystal Structure of a Novel Anthracene-Bridged Molybdenumâ^'Zinc Porphyrin Dimer. Inorganic Chemistry, 2002, 41, 1170-1176.	4.0	9
86	Molecular Wiring Method Based on Polymerization or Copolymerization of an Insulated π-Conjugated Monomer. Bulletin of the Chemical Society of Japan, 2014, 87, 871-873.	3.2	9
87	Preparation of Molybdenum Porphyrin Dioxygen Complexes without Bulky Substituents. Chemistry Letters, 1999, 28, 403-404.	1.3	8
88	Iron oxide catalyzed reduction of acid chlorides to aldehydes with hydrosilanes. Catalysis Communications, 2014, 50, 25-28.	3.3	8
89	Synthesis and Redox Response of Insulated Molecular Wire Elongated through Iron–Terpyridine Coordination Bonds. Chemistry Letters, 2014, 43, 1289-1291.	1.3	8
90	Encapsulation by Cyclic Porphyrin Dimers Using Various Interaction Modes. Chemistry Letters, 2014, 43, 1374-1376.	1.3	8

#	Article	IF	CITATIONS
91	Copper-Catalyzed Regioselective Sila-Acylation and Silaformylation of 1,3-Dienes Using Esters. Journal of Organic Chemistry, 2021, 86, 9869-9875.	3.2	8
92	A Typical Metalâ€lonâ€Responsive Colorâ€Tunable Emitting Insulated Ï€â€Conjugated Polymer Film. Angewandte Chemie, 2016, 128, 13625-13629.	2.0	7
93	Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide Catalyzed by MgCl ₂ . Chemistry Letters, 2017, 46, 968-969.	1.3	7
94	Steric Effect of Carboxylate Ligands on Pdâ€Catalyzed Intramolecular C(sp ²)–H and C(sp ³)–H Arylation Reactions. Angewandte Chemie, 2018, 130, 10471-10474.	2.0	7
95	Solid and Solution State Structures of a Reversible Molecular Oxygen-Carrying Molybdenum Porphyrin Dioxygen Complex. Chemistry Letters, 2000, 29, 102-103.	1.3	6
96	Structural Characterization of Ruthenium–Dioxolene Complexes with Rull–SQ and Rull–Cat Frameworks. Chemistry Letters, 2005, 34, 1562-1563.	1.3	6
97	Transition-metal Catalyzed Synthesis of Carbonyl Compounds Using Formates or Formamides as Carbonyl Sources. Journal of the Japan Petroleum Institute, 2018, 61, 1-9.	0.6	6
98	Copper atalyzed [4+2] Cycloaddition Using <i>N</i> â€(2â€Pyridyl)ketimines and Terminal Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 3245-3248.	4.3	6
99	Unusual Oxidation of Oxo-peroxomolybdenum(VI) Tetramesitylporphyrin Giving Molybdenum(V) Porphyrin and Dioxygen. Chemistry Letters, 2001, 30, 178-179.	1.3	5
100	Transition Metal-Catalyzed Synthesis of π-Conjugated Cyclic Esters and Amides from Alkynes and Carbonyl Reagents. Heterocycles, 2014, 89, 1343.	0.7	5
101	Two-step template method for synthesis of axis-length-controlled porphyrin-containing hollow structures. Chemical Communications, 2019, 55, 6755-6758.	4.1	5
102	Synthesis of Tetrasilatetrathia[8]circulenes through C–I and C–H Silylation. Synthesis, 2021, 53, 2995-3000.	2.3	5
103	Synthesis and Structural Characterization of a Series of Mono- <i>O</i> -(diphenylphosphinobenzyl)calix[6]arenes with and without <i>tert</i> -Butyl Moieties at the Upper Rim. Bulletin of the Chemical Society of Japan, 2009, 82, 1187-1193.	3.2	4
104	Synthesis and characterization of ruthenium(II) complexes with dendritic N-heterocyclic carbene ligands. Inorganica Chimica Acta, 2014, 409, 174-178.	2.4	4
105	Palladium atalyzed Difunctionalization of 1,3â€Diene with Amine and Disilane under a Mild Reâ€oxidation System. Chemistry - A European Journal, 2021, 27, 4888-4892.	3.3	4
106	Synthesis of Highly Insulated Conjugated Metallopolymers Containing Terpyridine–Metal Complexes. Chemistry Letters, 2016, 45, 931-933.	1.3	3
107	Cobaltâ€Catalyzed Reductive Coupling of Alkynes and Acrylates Bearing a Leaving Group: Construction of Cyclobutene Rings. Asian Journal of Organic Chemistry, 2018, 7, 2456-2458.	2.7	3
108	Synthesis of Cyclic Allylborates from 1,3â€Dienes and a Diboron Reagent. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3

#	Article	IF	CITATIONS
109	Transition-Metal-Catalyzed Additions of Carbonyl Functionalities to Alkynes. Synlett, 2010, 2010, 2537-2548.	1.8	2
110	Synthesis of Molecular Wires Strapped by π-Conjugated Side Chains: Integration of Dehydrobenzo[20]annulene Units. Journal of Organic Chemistry, 2015, 80, 8874-8880.	3.2	2
111	Transition-Metal-Catalyzed Addition Reactions of Carbonyl Functionalities to Alkynes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 1375-1388.	0.1	2
112	New Design of Periphery-Functionalized Ligands and Their Application in Transition-Metal-Catalyzed Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 928-936.	0.1	2
113	Cu-catalyzed Transformations of Allenes: Use of in-situ Generated Allyl Copper Intermediates in Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 336-345.	0.1	2
114	Palladium(II) complexes bearing a salicylaldiminato ligand with a hydroxyl group: Synthesis, structures, deprotonation, and catalysis. Inorganica Chimica Acta, 2011, 368, 237-241.	2.4	1
115	Synthesis and Characterization of Carboxylic Acids Bearing Poly(ethylene glycol) Chains. Synlett, 2018, 29, 556-559.	1.8	1
116	Palladium-Catalyzed Synthesis of Fluorenes by Intramolecular C(sp2)–H Activation at Room Temperature. Synlett, 2020, 31, 805-808.	1.8	1
117	Cu-Catalyzed Regioselective Sila-acylation and Sila-imination of Allenes Using Esters and Nitriles. Synthesis, 0, , .	2.3	1
118	Titelbild: A Typical Metalâ€lonâ€Responsive Colorâ€Tunable Emitting Insulated Ï€â€Conjugated Polymer Film (Angew. Chem. 43/2016). Angewandte Chemie, 2016, 128, 13547-13547.	2.0	0
119	Rücktitelbild: Boraformylation and Silaformylation of Allenes (Angew. Chem. 6/2017). Angewandte Chemie, 2017, 129, 1700-1700.	2.0	0
120	Thieme Chemistry Journals Awardees – Where Are They Now? Synthesis of a Dinuclear Copper NHC Complex Bearing a Rigid π-Conjugated Cyclic Framework. Synlett, 2017, 28, 1775-1779.	1.8	0
121	Pyridines Bearing Poly(ethylene glycol) Chains: Synthesis and Use as Ligands. Asian Journal of Organic Chemistry, 2020, 9, 761-764.	2.7	0
122	Synthesis of Cyclic Allylborates from 1,3 $\hat{a} {\in} D$ ienes and a Diboron Reagent. Angewandte Chemie, 0, , .	2.0	0