Valeria Cafaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5595775/publications.pdf

Version: 2024-02-01

759233 752698 20 553 12 h-index citations g-index papers

20 20 20 810 docs citations times ranked citing authors all docs

20

#	Article	IF	CITATIONS
1	Human Cryptic Host Defence Peptide GVF27 Exhibits Anti-Infective Properties against Biofilm Forming Members of the Burkholderia cepacia Complex. Pharmaceuticals, 2022, 15, 260.	3.8	3
2	Antimicrobial d-amino acid oxidase-derived peptides specify gut microbiota. Cellular and Molecular Life Sciences, 2021, 78, 3607-3620.	5.4	6
3	Host defence peptides identified in human apolipoprotein B as promising antifungal agents. Applied Microbiology and Biotechnology, 2021, 105, 1953-1964.	3.6	13
4	Transglutaminase-mediated crosslinking of a host defence peptide derived from human apolipoprotein B and its effect on the peptide antimicrobial activity. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129803.	2.4	5
5	Environment-Sensitive Fluorescent Labelling of Peptides by Luciferin Analogues. International Journal of Molecular Sciences, 2021, 22, 13312.	4.1	1
6	Antimicrobial peptide Temporin-L complexed with anionic cyclodextrins results in a potent and safe agent against sessile bacteria. International Journal of Pharmaceutics, 2020, 584, 119437.	5.2	19
7	Enzymes as a Reservoir of Host Defence Peptides. Current Topics in Medicinal Chemistry, 2020, 20, 1310-1323.	2.1	5
8	Membrane disintegration by the antimicrobial peptide (P)GKY20: lipid segregation and domain formation. Physical Chemistry Chemical Physics, 2019, 21, 3989-3998.	2.8	26
9	Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles. Journal of Microbiology, 2019, 57, 498-508.	2.8	6
10	Cost-effective production of recombinant peptides in Escherichia coli. New Biotechnology, 2019, 51, 39-48.	4.4	49
11	Rapid Affinity Maturation of Novel Anti-PD-L1 Antibodies by a Fast Drop of the Antigen Concentration and FACS Selection of Yeast Libraries. BioMed Research International, 2019, 2019, 1-22.	1.9	9
12	Structural and functional insights into RHA-P, a bacterial GH106 \hat{l} ±-L-rhamnosidase from Novosphingobium sp. PP1Y. Archives of Biochemistry and Biophysics, 2018, 648, 1-11.	3.0	13
13	Chemical Cleavage of an Asp-Cys Sequence Allows Efficient Production of Recombinant Peptides with an N-Terminal Cysteine Residue. Bioconjugate Chemistry, 2018, 29, 1373-1383.	3.6	16
14	Cryptic Antimicrobial Peptides: Identification Methods and Current Knowledge of their Immunomodulatory Properties. Current Pharmaceutical Design, 2018, 24, 1054-1066.	1.9	26
15	Identification of Novel Cryptic Multifunctional Antimicrobial Peptides from the Human Stomach Enabled by a Computational–Experimental Platform. ACS Synthetic Biology, 2018, 7, 2105-2115.	3.8	63
16	Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: Application to the detection of "cryptic―antimicrobial peptides. Journal of Theoretical Biology, 2017, 419, 254-265.	1.7	89
17	A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells. FEBS Journal, 2016, 283, 2115-2131.	4.7	54
18	Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli. PLoS ONE, 2016, 11, e0146552.	2.5	39

#	Article	IF	CITATION
19	<i>Methylobacterium populi</i> VP2: Plant Growth-Promoting Bacterium Isolated from a Highly Polluted Environment for Polycyclic Aromatic Hydrocarbon (PAH) Biodegradation. Scientific World Journal, The, 2014, 2014, 1-11.	2.1	54
20	The Marine Isolate Novosphingobium sp. PP1Y Shows Specific Adaptation to Use the Aromatic Fraction of Fuels as the Sole Carbon and Energy Source. Microbial Ecology, 2011, 61, 582-594.	2.8	57