Emiliano Bruner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5595638/publications.pdf

Version: 2024-02-01

147726 168321 3,561 120 31 citations h-index papers

g-index 121 121 121 2399 docs citations times ranked citing authors all docs

53

#	Article	IF	CITATIONS
1	The parietal lobe evolution and the emergence of material culture in the human genus. Brain Structure and Function, 2023, 228, 145-167.	1.2	27
2	Craniofacial orientation and parietal bone morphology in adult modern humans. Journal of Anatomy, 2022, 240, 330-338.	0.9	4
3	Reconstruction and analysis of the DAN5/P1 and BSN12/P1 Gona Early Pleistocene Homo fossils. Journal of Human Evolution, 2022, 162, 103102.	1.3	5
4	Visual Attention and Cognitive Archaeology: An Eye-Tracking Study of Palaeolithic Stone Tools. Perception, 2022, 51, 3-24.	0.5	15
5	The Influence of Tool Morphology on Visual Attention During the Interaction with Lower Palaeolithic Stone Tools. Lithic Technology, 2022, 47, 328-339.	0.4	1
6	A network approach to the topological organization of the Brodmann map. Anatomical Record, 2022, 305, 3504-3515.	0.8	6
7	Does knowledge influence visual attention? A comparative analysis between archaeologists and na \tilde{A}^{-} ve subjects during the exploration of Lower Palaeolithic tools. Archaeological and Anthropological Sciences, 2022, 14, .	0.7	3
8	Can a Neandertal meditate? An evolutionary view of attention as a core component of general intelligence. Intelligence, 2022, 93, 101668.	1.6	9
9	Not a matter of shape: The influence of tool characteristics on electrodermal activity in response to haptic exploration of Lower Palaeolithic tools. American Journal of Human Biology, 2021, , e23612.	0.8	3
10	A Middle Pleistocene <i>Homo</i> from Nesher Ramla, Israel. Science, 2021, 372, 1424-1428.	6.0	46
11	Craniovascular traits and braincase morphology in craniosynostotic human skulls. Journal of Anatomy, 2021, 239, 1050-1065.	0.9	3
12	Visual attention reveals affordances during Lower Palaeolithic stone tool exploration. Archaeological and Anthropological Sciences, 2021, 13, 1.	0.7	14
13	Temporal lobe evolution in Javanese Homo erectus and African Homo ergaster: Inferences from the cranial base. Quaternary International, 2021, 603, 5-21.	0.7	3
14	Evolving Human Brains: Paleoneurology and the Fate of Middle Pleistocene. Journal of Archaeological Method and Theory, 2021, 28, 76-94.	1.4	41
15	Hand morphometrics, electrodermal activity, and stone tools haptic perception. American Journal of Human Biology, 2020, 32, e23370.	0.8	12
16	A metric survey on the sagittal and coronal morphology of the precuneus in adult humans. Brain Structure and Function, 2020, 225, 2747-2755.	1.2	3
17	Hand grasping and finger flexion during Lower Paleolithic stone tool ergonomic exploration. Archaeological and Anthropological Sciences, 2020, 12, 1.	0.7	9
18	Ontogenetic changes of diploic channels in modern humans. American Journal of Physical Anthropology, 2020, 173, 96-111.	2.1	9

#	Article	IF	Citations
19	A morphometric comparison of the parietal lobe in modern humans and Neanderthals. Journal of Human Evolution, 2020, 142, 102770.	1.3	32
20	Is the middle cranial fossa a reliable predictor of temporal lobe volume in extant and fossil anthropoids?. American Journal of Physical Anthropology, 2020, 172, 698-713.	2.1	6
21	The skull from Florisbad: a paleoneurological report. Journal of Anthropological Sciences, 2020, 98, .	0.4	3
22	Normal craniovascular variation in two modern European adult populations. Journal of Anatomy, 2019, 235, 765-782.	0.9	11
23	Electrodermal activity during Lower Paleolithic stone tool handling. American Journal of Human Biology, 2019, 31, e23279.	0.8	15
24	Parietal lobe variation in cercopithecid endocasts. American Journal of Primatology, 2019, 81, e23025.	0.8	3
25	A network approach to brain form, cortical topology and human evolution. Brain Structure and Function, 2019, 224, 2231-2245.	1.2	13
26	Body Cognition and Self-Domestication in Human Evolution. Frontiers in Psychology, 2019, 10, 1111.	1.1	26
27	Cranial vault thickness measurement and distribution: a study with a magnetic calliper. Anthropological Science, 2019, 127, 47-54.	0.2	2
28	Human paleoneurology: Shaping cortical evolution in fossil hominids. Journal of Comparative Neurology, 2019, 527, 1753-1765.	0.9	23
29	A preliminary survey on hand grip and hand-tool morphometrics in three different stone tools. Journal of Archaeological Science: Reports, 2019, 23, 567-573.	0.2	10
30	Le lobe qui nous a rendus humains. , 2019, N° 115, 20-25.		0
31	The Neanderthal endocast from $G\tilde{A}_i$ novce (Poprad, Slovak Republic). Journal of Anthropological Sciences, 2019, 96, 139-149.	0.4	1
32	The circle of Gánovce: natural history of an endocast. Journal of Anthropological Sciences, 2019, 96, 135-138.	0.4	0
33	Networking Brains: Modeling Spatial Relationships of the Cerebral Cortex. , 2018, , 191-204.		7
34	The Evolution of the Parietal Lobes in the Genus Homo. , 2018, , 219-237.		8
35	Comparing Endocranial Surfaces: Mesh Superimposition and Coherent Point Drift Registration. , 2018, , 143-151.		5
36	The Endocranial Vascular System: Tracing Vessels. , 2018, , 71-91.		10

#	Article	IF	Citations
37	Landmarking Endocasts. , 2018, , 127-142.		9
38	The cerebellum in Alzheimer's disease: evaluating its role in cognitive decline. Brain, 2018, 141, 37-47.	3.7	222
39	Cranial shape variation in adult howler monkeys (<i>Alouatta seniculus</i>). American Journal of Primatology, 2018, 80, e22729.	0.8	4
40	Visuospatial Integration and Hand-Tool Interaction in Cognitive Archaeology. Current Topics in Behavioral Neurosciences, 2018, 41, 13-36.	0.8	14
41	Visuospatial Integration: Paleoanthropological and Archaeological Perspectives. Interdisciplinary Evolution Research, 2018, , 299-326.	0.2	17
42	Cognitive archeology, body cognition, and hand–tool interaction. Progress in Brain Research, 2018, 238, 325-345.	0.9	26
43	Human Paleoneurology and the Evolution of the Parietal Cortex. Brain, Behavior and Evolution, 2018, 91, 136-147.	0.9	56
44	Evidence for expansion of the precuneus in human evolution. Brain Structure and Function, 2017, 222, 1053-1060.	1.2	131
45	A human parietal fragment from the late Early Pleistocene Gran Dolina-TD6 cave site, Sierra de Atapuerca, Spain. Comptes Rendus - Palevol, 2017, 16, 71-81.	0.1	10
46	A frontal lobe surface analysis in three archaic African human fossils: OH 9, Buia, and Bodo. Comptes Rendus - Palevol, 2017, 16, 499-507.	0.1	19
47	Patterns of morphological integration between parietal and temporal areas in the human skull. Journal of Morphology, 2017, 278, 1312-1320.	0.6	15
48	Precuneus proportions and cortical folding: A morphometric evaluation on a racially diverse human sample. Annals of Anatomy, 2017, 211, 120-128.	1.0	24
49	Midsagittal Brain Variation among Non-Human Primates: Insights into Evolutionary Expansion of the Human Precuneus. Brain, Behavior and Evolution, 2017, 90, 255-263.	0.9	13
50	Shape analysis of spatial relationships between orbitoâ€ocular and endocranial structures in modern humans and fossil hominids. Journal of Anatomy, 2017, 231, 947-960.	0.9	19
51	Language, Paleoneurology, and the Fronto-Parietal System. Frontiers in Human Neuroscience, 2017, 11, 349.	1.0	32
52	Craniovascular traits in anthropology and evolution: from bones to vessels. Journal of Anthropological Sciences, 2017, 95, 35-65.	0.4	11
53	The endocranial anatomy of maba 1. American Journal of Physical Anthropology, 2016, 160, 633-643.	2.1	26
54	The endocast of the oneâ€millionâ€yearâ€old human cranium from Buia (UA 31), Danakil Eritrea. American Journal of Physical Anthropology, 2016, 160, 458-468.	2.1	18

#	Article	IF	CITATIONS
55	Sulcal pattern, extension, and morphology of the precuneus in adult humans. Annals of Anatomy, 2016, 208, 85-93.	1.0	24
56	Diploic vessels and computed tomography: Segmentation and comparison in modern humans and fossil hominids. American Journal of Physical Anthropology, 2016, 159, 313-324.	2.1	36
57	Parietal Bone Thickness and Vascular Diameters in Adult Modern Humans: A Survey on Cranial Remains. Anatomical Record, 2016, 299, 888-896.	0.8	26
58	Extending mind, visuospatial integration, and the evolution of the parietal lobes in the human genus. Quaternary International, 2016, 405, 98-110.	0.7	80
59	Visuospatial integration and human evolution: the fossil evidence. Journal of Anthropological Sciences, 2016, 94, 81-97.	0.4	8
60	Analysis of the volumetric relationship among human ocular, orbital and frontoâ€occipital cortical morphology. Journal of Anatomy, 2015, 227, 460-473.	0.9	25
61	The brain and the braincase: a spatial analysis on theÂmidsagittal profile in adult humans. Journal of Anatomy, 2015, 227, 268-276.	0.9	35
62	Tom Moore and Xoseé-Lois Armada, eds. Atlantic Europe in the First Millennium BC. Crossing the Divide (Oxford: Oxford University Press, 2011 690pp., 141 illustrations, hbk, ISBN 978-0-19-956795-9). European Journal of Archaeology, 2015, 18, 546-550.	0.3	0
63	Cortical surface area and cortical thickness in the precuneus of adult humans. Neuroscience, 2015, 286, 345-352.	1.1	32
64	A paleoneurological survey of Homo erectus endocranial metrics. Quaternary International, 2015, 368, 80-87.	0.7	28
65	Functional Craniology and Brain Evolution. Springer Series in Bio-/neuroinformatics, 2015, , 57-94.	0.1	29
66	Three hands: one year later. Journal of Anthropological Sciences, 2015, 93, 163-95.	0.4	9
67	Functional craniology and brain evolution: from paleontology to biomedicine. Frontiers in Neuroanatomy, 2014, 8, 19.	0.9	69
68	Midsagittal brain variation and <scp>MRI</scp> shape analysis of the precuneus in adult individuals. Journal of Anatomy, 2014, 224, 367-376.	0.9	48
69	Skull base embryology: a multidisciplinary review. Child's Nervous System, 2014, 30, 991-1000.	0.6	37
70	Functional Craniology, Human Evolution, and Anatomical Constraints in the Neanderthal Braincase. , 2014, , 121-129.		14
71	Open data, Science and Society: launching Oasis, the flagship initiative of the Istituto Italiano di Antropologia. Journal of Anthropological Sciences, 2014, 92, I-IV.	0.4	4
72	Extended mind and visuo-spatial integration: three hands for the Neandertal lineage. Journal of Anthropological Sciences, 2014, 92, 273-80.	0.4	30

#	Article	IF	Citations
73	Morphometric analysis of molars in a <scp>M</scp> iddle <scp>P</scp> leistocene population shows a mosaic of â€~modern' and <scp>N</scp> eanderthal features. Journal of Anatomy, 2013, 223, 353-363.	0.9	27
74	Correlation between corpus callosum shape and cognitive performance in healthy young adults. Brain Structure and Function, 2013, 218, 721-731.	1.2	17
75	Cranial sutures: a multidisciplinary review. Child's Nervous System, 2013, 29, 893-905.	0.6	46
76	Geometric variation of the frontal squama in the genus <i>homo</i> : Frontal bulging and the origin of modern human morphology. American Journal of Physical Anthropology, 2013, 150, 313-323.	2.1	26
77	Fractal analysis of the egg shell ornamentation in anostracans cysts: a quantitative approach to the morphological variations in Chirocephalus ruffoi. Hydrobiologia, 2013, 705, 1-8.	1.0	10
78	The Species Concept as a Cognitive Tool for Biological Anthropology. American Journal of Primatology, 2013, 75, 10-15.	0.8	13
79	A Sensitivity Analysis to the Role of the Frontoâ€Parietal Suture in <i>Lacerta Bilineata</i> : A Preliminary Finite Element Study. Anatomical Record, 2013, 296, 198-209.	0.8	15
80	Alzheimer's Disease: The Downside of a Highly Evolved Parietal Lobe?. Journal of Alzheimer's Disease, 2013, 35, 227-240.	1.2	70
81	Neurocranial evolution in modern humans: the case of Jebel Irhoud 1. Anthropological Science, 2013, 121, 31-41.	0.2	43
82	Language and hybrids: too many answers for too few questions. Journal of Anthropological Sciences, 2013, 91, 245-7.	0.4	2
83	Language: the elusive milestone. Journal of Anthropological Sciences, 2013, 91, 13-4.	0.4	O
84	Computer-assisted and fractal-based morphometric assessment of microvascularity in histological specimens of gliomas. Scientific Reports, 2012, 2, 429.	1.6	28
85	Genderâ€based differences in the shape of the human corpus callosum are associated with allometric variations. Journal of Anatomy, 2012, 220, 417-421.	0.9	32
86	Quantifying patterns of endocranial heat distribution: Brain geometry and thermoregulation. American Journal of Human Biology, 2012, 24, 753-762.	0.8	26
87	Midsagittal brain shape correlation with intelligence and cognitive performance. Intelligence, 2011, 39, 141-147.	1.6	25
88	The evolution of the meningeal vascular system in the human genus: From brain shape to thermoregulation. American Journal of Human Biology, 2011, 23, 35-43.	0.8	42
89	Quantitative assessment of interproximal wear facet outlines for the association of isolated molars. American Journal of Physical Anthropology, 2011, 144, 309-316.	2.1	22
90	A Bivariate Approach to the Variation of the Parietal Curvature in the Genus <i>Homo</i> . Anatomical Record, 2011, 294, 1548-1556.	0.8	49

#	Article	IF	CITATIONS
91	A bivariate approach to the widening of the frontal lobes in the genus Homo. Journal of Human Evolution, 2010, 58, 138-146.	1.3	107
92	The Relationship Between Cephalic Scales and Bones in Lizards: A Preliminary Microtomographic Survey on Three Lacertid Species. Anatomical Record, 2010, 293, 183-194.	0.8	21
93	Human midsagittal brain shape variation: patterns, allometry and integration. Journal of Anatomy, 2010, 216, 589-599.	0.9	54
94	Morphological Differences in the Parietal Lobes within the Human Genus. Current Anthropology, 2010, 51, S77-S88.	0.8	103
95	Shape and size variation: Growth and development of the dusky grouper (<i>Epinephelus) Tj ETQq1 1 0.784314</i>	rgBT/Ove	rlock 10 Tf 5
96	Landmarkâ€Based Analysis of the Morphological Relationship Between Endocranial Shape and Traces of the Middle Meningeal Vessels. Anatomical Record, 2009, 292, 518-527.	0.8	28
97	Head Morphology and Degree of Variation in Lacerta bilineata, Podarcis muralis and Podarcis sicula. International Journal of Morphology, 2009, 27, .	0.1	9
98	An unusually-wide human bregmatic Wormian bone: anatomy, tomographic description, and possible significance. Surgical and Radiologic Anatomy, 2008, 30, 683-687.	0.6	29
99	The middle meningeal artery: from clinics to fossils. Child's Nervous System, 2008, 24, 1289-1298.	0.6	53
100	A quantitative and descriptive approach to morphological variation of the endocranial base in modern humans. American Journal of Physical Anthropology, 2008, 137, 30-40.	2.1	66
101	Paleoneurology of an "early―Neandertal: endocranial size, shape, and features of Saccopastore 1. Journal of Human Evolution, 2008, 54, 729-742.	1.3	42
102	Morphological Variation in the Seahorse Vertebral System. International Journal of Morphology, 2008, 26, .	0.1	13
103	Digital morphology: modelling anatomy and evolution. Journal of Anthropological Sciences, 2008, 86, 3-5.	0.4	2
104	Sharing databases in the age of the digital anthropology: problems and perspectives. Journal of Anthropological Sciences, 2008, 86, 199.	0.4	0
105	Head morphological variation in Podarcis muralis and Podarcis sicula: a landmark-based approach. Amphibia - Reptilia, 2007, 28, 566-573.	0.1	19
106	Do patients with hypospadias and cryptorchidism share a common phenotype? Case–control study of an Italian paediatric population. Journal of Pediatric Urology, 2007, 3, 477-479.	0.6	0
107	Landmark-based shape analysis of the archaicHomo calvarium from Ceprano (Italy). American Journal of Physical Anthropology, 2007, 132, 355-366.	2.1	35
108	Male-biased predation of western green lizards by Eurasian kestrels. Die Naturwissenschaften, 2007, 94, 1015-1020.	0.6	54

#	Article	IF	CITATIONS
109	Cranial shape and size variation in human evolution: structural and functional perspectives. Child's Nervous System, 2007, 23, 1357-1365.	0.6	59
110	Digital Tools for the Preservation of the Human Fossil Heritage: Ceprano, Saccopastore, and Other Case Studies. Human Evolution, 2006, 21, 33-44.	2.0	15
111	Fractal dimension of the middle meningeal vessels: variation and evolution in Homo erectus , Neanderthals, and modern humans. European Journal of Morphology, 2006, 42, 217-224.	1.4	30
112	Morphological variation and sexual dimorphism of the cephalic scales in Lacerta bilineata. Acta Zoologica, 2005, 86, 245-254.	0.6	37
113	CT-based description and phyletic evaluation of the archaic human calvarium from Ceprano, Italy. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005, 285A, 643-657.	2.0	52
114	Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. Journal of Human Evolution, 2004, 47, 279-303.	1.3	263
115	Variability in facial size and shape among North and East African human populations. Italian Journal of Zoology, 2004, 71, 51-56.	0.6	12
116	Midsagittal cranial shape variation in the genus Homo by geometric morphometrics. Collegium Antropologicum, 2004, 28, 99-112.	0.1	32
117	The one-million-year-old Homo cranium from Bouri (Ethiopia): a reconsideration of its H. erectus affinities. Journal of Human Evolution, 2003, 44, 731-736.	1.3	35
118	Encephalization and allometric trajectories in the genus Homo: Evidence from the Neandertal and modern lineages. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15335-15340.	3.3	273
119	Surfin' endocasts: The good and the bad on brain form. Palaeontologia Electronica, 0, , 1-10.	0.9	6
120	Craniovascular variation in four late Holocene human samples from southern South America. Anatomical Record, 0, , .	0.8	1