Jooho Moon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5595424/publications.pdf

Version: 2024-02-01

279 papers 17,922 citations

72 h-index 17090 122 g-index

298 all docs

298 docs citations

times ranked

298

19009 citing authors

#	Article	IF	CITATIONS
1	Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing. Langmuir, 2006, 22, 3506-3513.	1.6	656
2	Influence of Fluid Physical Properties on Ink-Jet Printability. Langmuir, 2009, 25, 2629-2635.	1.6	591
3	Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of Colloid and Interface Science, 2007, 311, 417-424.	5.0	544
4	Role of Gallium Doping in Dramatically Lowering Amorphousâ€Oxide Processing Temperatures for Solutionâ€Derived Indium Zinc Oxide Thinâ€Film Transistors. Advanced Materials, 2010, 22, 1346-1350.	11,1	493
5	Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films, 2007, 515, 7706-7711.	0.8	479
6	Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Inkâ€et Printing. Advanced Functional Materials, 2008, 18, 679-686.	7.8	459
7	Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells. ACS Nano, 2013, 7, 1081-1091.	7.3	430
8	Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews, 2019, 48, 4979-5015.	18.7	429
9	Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology, 2006, 17, 4019-4024.	1.3	316
10	Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions. Applied Physics Letters, 2006, 89, 264101.	1.5	286
11	Homologous CoP/NiCoP Heterostructure on Nâ€Doped Carbon for Highly Efficient and pHâ€Universal Hydrogen Evolution Electrocatalysis. Advanced Functional Materials, 2019, 29, 1807976.	7.8	278
12	A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Materials Horizons, 2017, 4, 851-856.	6.4	269
13	Highly Conductive Ink Jet Printed Films of Nanosilver Particles for Printable Electronics. Electrochemical and Solid-State Letters, 2005, 8, J30.	2.2	257
14	A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy and Environmental Science, 2012, 5, 5340-5345.	15.6	229
15	Preparation of Ag/SiO2Nanosize Composites by a Reverse Micelle and Solâ^Gel Technique. Langmuir, 1999, 15, 4328-4334.	1.6	223
16	Low-temperature, solution-processed metal oxide thin film transistors. Journal of Materials Chemistry, 2012, 22, 1243-1250.	6.7	202
17	Allâ€Solutionâ€Processed Indiumâ€Free Transparent Composite Electrodes based on Ag Nanowire and Metal Oxide for Thinâ€Film Solar Cells. Advanced Functional Materials, 2014, 24, 2462-2471.	7.8	176
18	Ink-Jet Printing of Cuâ^'Ag-Based Highly Conductive Tracks on a Transparent Substrate. Langmuir, 2009, 25, 429-433.	1.6	168

#	Article	IF	Citations
19	Fully Flexible Solutionâ€Deposited ZnO Thinâ€Film Transistors. Advanced Materials, 2010, 22, 4308-4312.	11.1	166
20	High-performance low-temperature solution-processable ZnO thin film transistors by microwave-assisted annealing. Journal of Materials Chemistry, 2011, 21, 1102-1108.	6.7	163
21	Solution-Processed Zinc Tin Oxide Semiconductor for Thin-Film Transistors. Journal of Physical Chemistry C, 2008, 112, 11082-11085.	1.5	160
22	Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding. Nature Nanotechnology, 2010, 5, 742-748.	15.6	152
23	Rapid Self-Assembly of Monodisperse Colloidal Spheres in an Ink-Jet Printed Droplet. Chemistry of Materials, 2004, 16, 4212-4215.	3.2	151
24	Chiral 2D Organic Inorganic Hybrid Perovskite with Circular Dichroism Tunable Over Wide Wavelength Range. Journal of the American Chemical Society, 2020, 142, 4206-4212.	6.6	151
25	Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics. NPG Asia Materials, 2014, 6, e105-e105.	3.8	150
26	Preparation and characterization of the Sb-doped TiO2 photocatalysts. Journal of Materials Science, 2001, 36, 949-955.	1.7	149
27	Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2005, 139, 67-72.	4.0	149
28	Bias-Stress-Stable Solution-Processed Oxide Thin Film Transistors. ACS Applied Materials & Eamp; Interfaces, 2010, 2, 611-615.	4.0	138
29	Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting. Nature Communications, 2020, 11, 861.	5.8	135
30	Direct-write fabrication of colloidal photonic crystal microarrays by ink-jet printing. Journal of Colloid and Interface Science, 2006, 298, 713-719.	5.0	130
31	ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis. Superlattices and Microstructures, 2008, 43, 330-339.	1.4	130
32	A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%. NPG Asia Materials, 2014, 6, e132-e132.	3.8	126
33	The impact of anode microstructure on the power generating characteristics of SOFC. Solid State lonics, 2003, 158, 225-232.	1.3	121
34	Band-gap-graded Cu2ZnSn(S1-x,Sex)4 Solar Cells Fabricated by an Ethanol-based, Particulate Precursor Ink Route. Scientific Reports, 2013, 3, 3069.	1.6	120
35	Black phosphorus supported Ni2P co-catalyst on graphitic carbon nitride enabling simultaneous boosting charge separation and surface reaction. Applied Catalysis B: Environmental, 2019, 242, 422-430.	10.8	120
36	Solution-deposited Zr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors. Journal of Materials Chemistry C, 2013, 1, 4275.	2.7	115

#	Article	IF	Citations
37	Performance and durability of Ni-coated YSZ anodes for intermediate temperature solid oxide fuel cells. Solid State Ionics, 2006, 177, 931-938.	1.3	114
38	Spatial charge separation on strongly coupled 2D-hybrid of rGO/La2Ti2O7/NiFe-LDH heterostructures for highly efficient noble metal free photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2018, 239, 178-186.	10.8	112
39	Inkjet-Printed Zinc Tin Oxide Thin-Film Transistor. Langmuir, 2009, 25, 11149-11154.	1.6	108
40	Bandgap-Graded Cu ₂ Zn(Sn _{1–<i>x</i>} Ge _{<i>x</i>})S ₄ Thin-Film Solar Cells Derived from Metal Chalcogenide Complex Ligand Capped Nanocrystals. Chemistry of Materials, 2014, 26, 3957-3965.	3.2	108
41	A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring. Nanoscale, 2018, 10, 7890-7897.	2.8	108
42	Allâ€Solutionâ€Processed Silver Nanowire Window Electrodeâ€Based Flexible Perovskite Solar Cells Enabled with Amorphous Metal Oxide Protection. Advanced Energy Materials, 2018, 8, 1702182.	10.2	108
43	Fabrication of functionally graded reaction infiltrated SiC–Si composite by three-dimensional printing (3DPâ,,¢) process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 298, 110-119.	2.6	107
44	A low-cure-temperature copper nano ink for highly conductive printed electrodes. Current Applied Physics, 2009, 9, e157-e160.	1.1	107
45	Chiral Perovskites for Nextâ€Generation Photonics: From Chirality Transfer to Chiroptical Activity. Advanced Materials, 2021, 33, e2005760.	11.1	107
46	Organic thin film transistor using silver electrodes by the ink-jet printing technology. Thin Solid Films, 2007, 515, 7692-7696.	0.8	104
47	Effect of Carboxylic Acid on Sintering of Inkjet-Printed Copper Nanoparticulate Films. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2377-2382.	4.0	104
48	A solution-processed yttrium oxide gate insulator for high-performance all-solution-processed fully transparent thin film transistors. Journal of Materials Chemistry, 2012, 22, 21265.	6.7	104
49	Molecular Chemistry-Controlled Hybrid Ink-Derived Efficient Cu ₂ ZnSnS ₄ Photocathodes for Photoelectrochemical Water Splitting. ACS Energy Letters, 2016, 1, 1127-1136.	8.8	103
50	Continuous Patterning of Copper Nanowire-Based Transparent Conducting Electrodes for Use in Flexible Electronic Applications. ACS Nano, 2016, 10, 7847-7854.	7.3	100
51	Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells. Nanoscale, 2016, 8, 6308-6316.	2.8	99
52	Inkâ€Jet Printing of Binders for Ceramic Components. Journal of the American Ceramic Society, 2002, 85, 755-762.	1.9	97
53	Intermediate temperature solid oxide fuel cell using (La,Sr)(Co,Fe)O3-based cathodes. Solid State lonics, 2006, 177, 3211-3216.	1.3	95
54	Parallelized Nanopillar Perovskites for Semitransparent Solar Cells Using an Anodized Aluminum Oxide Scaffold. Advanced Energy Materials, 2016, 6, 1601055.	10.2	95

#	Article	IF	Citations
55	Time-Resolved Observations of Photo-Generated Charge-Carrier Dynamics in Sb ₂ Se ₃ Photocathodes for Photoelectrochemical Water Splitting. ACS Nano, 2018, 12, 11088-11097.	7.3	94
56	Self-oriented Sb ₂ Se ₃ nanoneedle photocathodes for water splitting obtained by a simple spin-coating method. Journal of Materials Chemistry A, 2017, 5, 2180-2187.	5.2	91
57	Solution processed invisible all-oxide thin film transistors. Journal of Materials Chemistry, 2009, 19, 8881.	6.7	90
58	Adjusting the Anisotropy of 1D Sb ₂ Se ₃ Nanostructures for Highly Efficient Photoelectrochemical Water Splitting. Advanced Energy Materials, 2018, 8, 1702888.	10.2	89
59	Low Temperature Solution-Processed InZnO Thin-Film Transistors. Journal of the Electrochemical Society, 2010, 157, J111.	1.3	88
60	Cu-Doped NiO _{<i>x</i>} as an Effective Hole-Selective Layer for a High-Performance Sb ₂ Se ₃ Photocathode for Photoelectrochemical Water Splitting. ACS Energy Letters, 2019, 4, 995-1003.	8.8	88
61	Inkjet-printing of indium tin oxide (ITO) films for transparent conducting electrodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1128-1131.	1.7	87
62	Nano-composite materials for high-performance and durability of solid oxide fuel cells. Journal of Power Sources, 2006, 163, 392-397.	4.0	85
63	Recent Advances in Earthâ€Abundant Photocathodes for Photoelectrochemical Water Splitting. ChemSusChem, 2019, 12, 1889-1899.	3.6	84
64	Amino acid salt-driven planar hybrid perovskite solar cells with enhanced humidity stability. Nano Energy, 2019, 59, 481-491.	8.2	82
65	Low temperature synthesis of lead titanate by a hydrothermal method. Journal of Materials Research, 1997, 12, 189-197.	1.2	81
66	Origin of the enhanced photovoltaic characteristics of PbS thin film solar cells processed at near room temperature. Journal of Materials Chemistry A, 2014, 2, 20112-20117.	5.2	80
67	High performance and high stability low temperature aqueous solution-derived Li–Zr co-doped ZnO thin film transistors. Journal of Materials Chemistry, 2012, 22, 5390.	6.7	78
68	Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. Nanoscale, 2015, 7, 17195-17210.	2.8	77
69	Effect of metal (Al, Ga, and In)-dopants and/or Ag-nanoparticles on the optical and electrical properties of ZnO thin films. Thin Solid Films, 2006, 515, 957-960.	0.8	76
70	Compositional influence on sol-gel-derived amorphous oxide semiconductor thin film transistors. Applied Physics Letters, 2009, 95, 103501.	1.5	75
71	Electrospun Ni-Added SnO ₂ –Carbon Nanofiber Composite Anode for High-Performance Lithium-lon Batteries. ACS Applied Materials & Lithium-lon Batteries.	4.0	75
72	Strainâ€Mediated Phase Stabilization: A New Strategy for Ultrastable αâ€CsPbl ₃ Perovskite by Nanoconfined Growth. Small, 2019, 15, e1900219.	5.2	74

#	Article	IF	Citations
73	Metal salt-derived In–Ga–Zn–O semiconductors incorporating formamide as a novel co-solvent for producing solution-processed, electrohydrodynamic-jet printed, high performance oxide transistors. Journal of Materials Chemistry C, 2013, 1, 4236.	2.7	73
74	Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts. Journal of Materials Research, 1999, 14, 425-435.	1.2	72
75	Formation mechanisms and morphological changes during the hydrothermal synthesis of BaTiO3 particles from a chemically modified, amorphous titanium (hydrous) oxide precursor. Journal of the European Ceramic Society, 2003, 23, 2153-2161.	2.8	71
76	Cu(<scp>ii</scp>)–alkyl amine complex mediated hydrothermal synthesis of Cu nanowires: exploring the dual role of alkyl amines. Physical Chemistry Chemical Physics, 2014, 16, 22107-22115.	1.3	70
77	Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3028-3037.	5.2	70
78	All Solution-Processed, Fully Transparent Resistive Memory Devices. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4525-4530.	4.0	68
79	Extremely flexible, printable Ag conductive features on PET and paper substrates via continuous millisecond photonic sintering in a large area. Journal of Materials Chemistry C, 2014, 2, 9746-9753.	2.7	68
80	Nanosized Glass Frit as an Adhesion Promoter for Inkâ€Jet Printed Conductive Patterns on Glass Substrates Annealed at High Temperatures. Advanced Functional Materials, 2008, 18, 2862-2868.	7.8	67
81	Cold Antisolvent Bathing Derived Highly Efficient Largeâ€Area Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901719.	10.2	67
82	Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427, 213552.	9.5	66
83	Read/write mechanisms and data storage system using atomic force microscopy and MEMS technology. Ultramicroscopy, 2002, 91, 103-110.	0.8	65
84	Efficient Solar-to-Hydrogen Conversion from Neutral Electrolytes using Morphology-Controlled Sb ₂ Se ₃ Light Absorbers. ACS Energy Letters, 2019, 4, 517-526.	8.8	63
85	Synthesis of oxidation-resistant core–shell copper nanoparticles. RSC Advances, 2013, 3, 15169.	1.7	62
86	Metalâ€Nanowireâ€Electrodeâ€Based Perovskite Solar Cells: Challenging Issues and New Opportunities. Advanced Energy Materials, 2017, 7, 1602751.	10.2	62
87	Catalytic Combustion of Methane over Rare Earth Stannate Pyrochlore. Catalysis Letters, 2003, 87, 219-223.	1.4	61
88	Reducibleâ€Shellâ€Derived Pureâ€Copperâ€Nanowire Network and Its Application to Transparent Conducting Electrodes. Advanced Functional Materials, 2016, 26, 6545-6554.	7.8	61
89	Synthesis of nanocrystalline manganese oxide powders: Influence of hydrogen peroxide on particle characteristics. Journal of Materials Research, 1999, 14, 4594-4601.	1.2	59
90	Bias Stress Stability of Solution-Processed Zinc Tin Oxide Thin-Film Transistors. Journal of the Electrochemical Society, 2009, 156, H808.	1.3	59

#	Article	IF	Citations
91	Solution-processed ZnO nanoparticle-based semiconductor oxide thin-film transistors. Superlattices and Microstructures, 2008, 44, 761-769.	1.4	58
92	Hierarchal Nanorod-Derived Bilayer Strategy to Enhance the Photocurrent Density of Sb ₂ Se ₃ Photocathodes for Photoelectrochemical Water Splitting. ACS Energy Letters, 2020, 5, 136-145.	8.8	58
93	Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation. Nanoscale, 2016, 8, 8995-9003.	2.8	57
94	Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Applied Catalysis B: Environmental, 2021, 293, 120217.	10.8	57
95	Organic-inorganic hybrid dielectrics with low leakage current for organic thin-film transistors. Applied Physics Letters, 2006, 89, 092101.	1.5	56
96	Polyethylenimine-Mediated Electrostatic Assembly of MnO ₂ Nanorods on Graphene Oxides for Use as Anodes in Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11499-11506.	4.0	56
97	Ni-YSZ cermet anode fabricated from NiO-YSZ composite powder for high-performance and durability of solid oxide fuel cells. Solid State Ionics, 2007, 178, 1304-1309.	1.3	55
98	Ink-Jet-Printed Organica^'Inorganic Hybrid Dielectrics for Organic Thin-Film Transistors. Journal of Physical Chemistry C, 2008, 112, 5245-5249.	1.5	55
99	Bias stress stable aqueous solution derived Y-doped ZnO thin film transistors. Journal of Materials Chemistry, 2011, 21, 13524.	6.7	55
100	LSCFâ€"SDC coreâ€"shell high-performance durable composite cathode. Journal of Power Sources, 2010, 195, 118-123.	4.0	54
101	La ₂ O ₃ interface modification of mesoporous TiO ₂ nanostructures enabling highly efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 15478-15485.	5.2	53
102	Relationship between printability and rheological behavior of ink-jet conductive inks. Ceramics International, 2013, 39, 7015-7021.	2.3	52
103	Inkjet-printed Cu source/drain electrodes for solution-deposited thin film transistors. Journal of Materials Chemistry, 2010, 20, 3877.	6.7	51
104	Characterization of the electrode and electrolyte interfaces of LSGM-based SOFCs. Solid State Ionics, 2006, 177, 2155-2158.	1.3	50
105	Controlled Electrodeposition of Photoelectrochemically Active Amorphous MoS <i></i> Cocatalyst on Sb ₂ Se ₃ Photocathode. ACS Applied Materials & Distribution (10, 10898-10908).	4.0	50
106	Hydrogel protection strategy to stabilize water-splitting photoelectrodes. Nature Energy, 2022, 7, 537-547.	19.8	50
107	Influence of annealing condition on the properties of sputtered hafnium oxide. Journal of Non-Crystalline Solids, 2002, 303, 139-143.	1.5	48
108	Oriented Lead Titanate Film Growth at Lower Temperatures by the Solâ€Gel Method on Particleâ€Seeded Substrates. Journal of the American Ceramic Society, 1997, 80, 2613-2623.	1.9	48

#	Article	IF	Citations
109	Effect of starting particulate materials on microstructure and cathodic performance of nanoporous LSM–YSZ composite cathodes. Journal of Power Sources, 2007, 167, 258-264.	4.0	48
110	Solar water splitting exceeding 10% efficiency <i>via</i> low-cost Sb ₂ Se ₃ photocathodes coupled with semitransparent perovskite photovoltaics. Energy and Environmental Science, 2020, 13, 4362-4370.	15.6	47
111	All-Ink-Jet Printed Flexible Organic Thin-Film Transistors on Plastic Substrates. Electrochemical and Solid-State Letters, 2009, 12, H195.	2.2	46
112	Contact Area Lithography (CAL):Â A New Approach to Direct Formation of Nanometric Chemical Patterns. Chemistry of Materials, 2006, 18, 1085-1088.	3.2	45
113	Effects of anode and electrolyte microstructures on performance of solid oxide fuel cells. Journal of Power Sources, 2007, 169, 265-270.	4.0	45
114	Enhanced Performance of Solution-Processed Amorphous LiYInZnO Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2012, 4, 1456-1461.	4.0	45
115	Nano-composite structural Ni–Sn alloy anodes for high performance and durability of direct methane-fueled SOFCs. Journal of Materials Chemistry A, 2015, 3, 13801-13806.	5.2	45
116	Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes. Journal of Power Sources, 2017, 345, 30-40.	4.0	45
117	Fabrication of Monodisperse Asymmetric Colloidal Clusters by Using Contact Area Lithography (CAL). Journal of the American Chemical Society, 2007, 129, 14232-14239.	6.6	44
118	Low-temperature soluble InZnO thin film transistors by microwave annealing. Journal of Crystal Growth, 2011, 326, 23-27.	0.7	44
119	Selective Light-Induced Patterning of Carbon Nanotube/Silver Nanoparticle Composite To Produce Extremely Flexible Conductive Electrodes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 6163-6170.	4.0	44
120	Investigating Recombination and Charge Carrier Dynamics in a One-Dimensional Nanopillared Perovskite Absorber. ACS Nano, 2018, 12, 4233-4245.	7.3	44
121	Boosting Visible Light Harvesting in pâ€Type Ternary Oxides for Solarâ€toâ€Hydrogen Conversion Using Inverse Opal Structure. Advanced Functional Materials, 2019, 29, 1900194.	7.8	43
122	Fullerene as a Photoelectron Transfer Promoter Enabling Stable TiO ₂ â€Protected Sb ₂ Se ₃ Photocathodes for Photoâ€Electrochemical Water Splitting. Advanced Energy Materials, 2019, 9, 1900179.	10.2	43
123	Hierarchically Structured Bifunctional Electrocatalysts of Stacked Core–Shell CoS _{1â^'} <i></i> P <i></i> Heterostructure Nanosheets for Overall Water Splitting. Small Methods, 2020, 4, 2000043.	4.6	43
124	Solution-processable tin-doped indium oxide with a versatile patternability for transparent oxide thin film transistors. Journal of Materials Chemistry, 2011, 21, 14646.	6.7	42
125	Effect of gallium content on bias stress stability of solution-deposited Ga–Sn–Zn–O semiconductor transistors. Thin Solid Films, 2011, 519, 6164-6168.	0.8	41
126	A pre-strain strategy for developing a highly stretchable and foldable one-dimensional conductive cord based on a Ag nanowire network. Nanoscale, 2017, 9, 5773-5778.	2.8	41

#	Article	IF	Citations
127	Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth. Nature Communications, 2022, 13, .	5.8	41
128	Fabrication of a solution-processed thin-film transistor using zinc oxide nanoparticles and zinc acetate. Superlattices and Microstructures, 2007, 42, 361-368.	1.4	40
129	Facile morphology control strategy to enhance charge separation efficiency of Mo:BiVO4 photoanodes for efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2022, 430, 133061.	6.6	40
130	Highly concentrated synthesis of copper-zinc-tin-sulfide nanocrystals with easily decomposable capping molecules for printed photovoltaic applications. Nanoscale, 2013, 5, 10183.	2.8	39
131	A nanopillar-structured perovskite-based efficient semitransparent solar module for power-generating window applications. Journal of Materials Chemistry A, 2020, 8, 1457-1468.	5.2	39
132	Particle-shape control and formation mechanisms of hydrothermally derived lead titanate. Journal of Materials Research, 1999, 14, 866-875.	1.2	38
133	Co-electrospun Pd-coated porous carbon nanofibers for hydrogen storage applications. International Journal of Hydrogen Energy, 2011, 36, 3566-3573.	3.8	38
134	Influence of precursor type on non-toxic hybrid inks for high-efficiency Cu ₂ ZnSnS ₄ thin-film solar cells. Green Chemistry, 2014, 16, 4323-4332.	4.6	37
135	Retarding Crystallization during Facile Single Coating of NaCl-Incorporated Precursor Solution for Efficient Large-Area Uniform Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29419-29426.	4.0	37
136	Fabrication of colloidal self-assembled monolayer (SAM) using monodisperse silica and its use as a lithographic mask. Thin Solid Films, 2004, 447-448, 638-644.	0.8	36
137	Enhanced Photocurrent of Transparent CuFeO ₂ Photocathodes by Self-Light-Harvesting Architecture. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14078-14087.	4.0	36
138	Performance enhancement of mesoporous TiO2-based perovskite solar cells by ZnS ultrathin-interfacial modification layer. Journal of Alloys and Compounds, 2018, 738, 405-414.	2.8	36
139	High-Performance Phase-Pure SnS Photocathodes for Photoelectrochemical Water Splitting Obtained via Molecular Ink-Derived Seed-Assisted Growth of Nanoplates. ACS Applied Materials & Diterfaces, 2020, 12, 15155-15166.	4.0	36
140	Phase development of barium titanate from chemically modified-amorphous titanium (hydrous) oxide precursor. Journal of the European Ceramic Society, 2002, 22, 809-815.	2.8	35
141	Aging Dynamics of Solution-Processed Amorphous Oxide Semiconductor Field Effect Transistors. ACS Applied Materials & Empty Service (1988) Applied Materials & Em	4.0	35
142	Hydrothermal Synthesis and Formation Mechanisms of Lanthanum Tin Pyrochlore Oxide. Journal of the American Ceramic Society, 2001, 84, 2531-2536.	1.9	34
143	Direct photopatternable organic–inorganic hybrid gate dielectric for solution-processed flexible ZnO thin film transistors. Journal of Materials Chemistry, 2011, 21, 11879.	6.7	34
144	Elucidation of the Formation Mechanism of Highly Oriented Multiphase Ruddlesden–Popper Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 249-260.	8.8	34

#	Article	IF	Citations
145	Influences of pH and Ligand Type on the Performance of Inorganic Aqueous Precursor-Derived ZnO Thin Film Transistors. ACS Applied Materials & Thin Film Transistors.	4.0	33
146	Shapeâ€Reconfigurable Aluminum–Air Batteries. Advanced Functional Materials, 2017, 27, 1702244.	7.8	33
147	Optical properties of single droplet of photonic crystal assembled by ink-jet printing. Applied Physics Letters, 2005, 86, 241114.	1.5	32
148	Thermally driven <i>in situ</i> exsolution of Ni nanoparticles from (Ni, Gd)CeO ₂ for high-performance solid oxide fuel cells. Journal of Materials Chemistry A, 2018, 6, 18133-18142.	5.2	32
149	Ink-Jet Printing of Silver Conductive Tracks on Flexible Substrates. Molecular Crystals and Liquid Crystals, 2006, 459, 45/[325]-55/[335].	0.4	31
150	Energy Level-Graded Al-Doped ZnO Protection Layers for Copper Nanowire-Based Window Electrodes for Efficient Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 13824-13835.	4.0	31
151	Surface restoration of polycrystalline Sb2Se3 thin films by conjugated molecules enabling high-performance photocathodes for photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2021, 286, 119890.	10.8	31
152	Fabrication of photo-patternable inorganic–organic hybrid film by spin-coating. Thin Solid Films, 2004, 466, 204-208.	0.8	30
153	Compositional influence of LSM-YSZ composite cathodes on improved performance and durability of solid oxide fuel cells. Journal of Power Sources, 2009, 187, 25-31.	4.0	30
154	Photoelectrochemical Properties of Vertically Aligned CuInS ₂ Nanorod Arrays Prepared via Template-Assisted Growth and Transfer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 425-431.	4.0	30
155	Single-Chamber Solid Oxide Fuel Cell with Micropatterned Interdigitated Electrodes. Electrochemical and Solid-State Letters, 2006, 9, A228.	2.2	29
156	An investigation of the interfacial stability between the anode and electrolyte layer of LSGM-based SOFCs. Journal of Materials Science, 2007, 42, 1866-1871.	1.7	29
157	Rapid advances in antimony triselenide photocathodes for solar hydrogen generation. Journal of Materials Chemistry A, 2019, 7, 20467-20477.	5.2	29
158	Nanoparticle-dispersed high-k organic–inorganic hybrid dielectrics for organic thin-film transistors. Organic Electronics, 2009, 10, 982-989.	1.4	28
159	LSCM–YSZ nanocomposites for a high performance SOFC anode. Ceramics International, 2013, 39, 9753-9758.	2.3	28
160	Multifunctional nano-heterogeneous Ni(OH)2/NiFe catalysts on silicon photoanode toward efficient water and urea oxidation. Applied Catalysis B: Environmental, 2022, 317, 121765.	10.8	28
161	Sol–Gel Route to Porous Lanthanum Cobaltite (LaCoO ₃) Thin Films. Journal of the American Ceramic Society, 2000, 83, 2852-2854.	1.9	27
162	Influence of patterned electrode geometry on performance of co-planar, single-chamber, solid oxide fuel cell. Journal of Power Sources, 2007, 171, 511-516.	4.0	27

#	Article	IF	Citations
163	Interlayer-free nanostructured La0.58Sr0.4Co0.2 Fe0.8O3â^'Î' cathode on scandium stabilized zirconia electrolyte for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 187, 74-79.	4.0	26
164	Hierarchical Titania Nanotubes with Self-Branched Crystalline Nanorods. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1581-1587.	4.0	25
165	3D intra-stacked CoO/carbon nanocomposites welded by Ag nanoparticles for high-capacity, reversible lithium storage. Nanoscale, 2015, 7, 10368-10376.	2.8	25
166	Photoelectrodes based on 2D opals assembled from Cu-delafossite double-shelled microspheres for an enhanced photoelectrochemical response. Nanoscale, 2018, 10, 3720-3729.	2.8	25
167	Elucidating the Synergistic Behavior of Orientationâ€Controlled SnS Nanoplates and Carbon Layers for Highâ€Performance Lithium―and Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	25
168	Slurry Chemistry Control to Produce Easily Redispersible Ceramic Powder Compacts. Journal of the American Ceramic Society, 2000, 83, 2401-2408.	1.9	24
169	All-Solution-Processed Thermally and Chemically Stable Copper–Nickel Core–Shell Nanowire-Based Composite Window Electrodes for Perovskite Solar Cells. ACS Applied Materials & Diterfaces, 2018, 10, 30337-30347.	4.0	24
170	Uniform Y2O3 coating on multi-component phosphor powders by modified polyol process. Journal of Colloid and Interface Science, 2006, 297, 589-594.	5.0	23
171	Functionally-graded composite cathodes for durable and high performance solid oxide fuel cells. Journal of Power Sources, 2010, 195, 2628-2632.	4.0	23
172	Thin Film Transistors with Ink-Jet Printed Amorphous Oxide Semiconductors. Japanese Journal of Applied Physics, 2010, 49, 05EB06.	0.8	23
173	Durable high-performance Sm0.5Sr0.5CoO3–Sm0.2Ce0.8O1.9 core-shell type composite cathodes for low temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 6875-6881.	3.8	23
174	Facile Microwave-Assisted Synthesis of Multiphase CulnSe ₂ Nanoparticles and Role of Secondary CuSe Phase on Photovoltaic Device Performance. Journal of Physical Chemistry C, 2013, 117, 9529-9536.	1.5	23
175	Electrodeposited Heterogeneous Nickel-Based Catalysts on Silicon for Efficient Sunlight-Assisted Water Splitting. Cell Reports Physical Science, 2020, 1, 100219.	2.8	23
176	Vacuum-Assisted Microfluidic Lithography of Ceramic Microstructures. Journal of the American Ceramic Society, 2005, 88, 1171-1174.	1.9	22
177	A nanocomposite material for highly durable solid oxide fuel cell cathodes. Journal of Materials Chemistry, 2008, 18, 1087.	6.7	22
178	Nanosecond laser ablation of silver nanoparticle film. Optical Engineering, 2013, 52, 024302.	0.5	22
179	Non-toxic ethanol based particulate inks for low temperature processed Cu2ZnSn(S,Se)4 solar cells without S/Se treatment. Solar Energy Materials and Solar Cells, 2014, 128, 362-368.	3.0	22
180	All-solid-state thin film battery based on well-aligned slanted LiCoO 2 nanowires fabricated by glancing angle deposition. Applied Surface Science, 2017, 412, 537-544.	3.1	22

#	Article	IF	Citations
181	Efficient electrocatalytic proton reduction on CoP nanocrystals embedded in microporous P, N Co-doped carbon spheres with dual active sites. Carbon, 2020, 156, 529-537.	5.4	22
182	Preparation and characterization of nanocrystalline doped TiO2. Advanced Powder Technology, 2000, 11, 211-220.	2.0	21
183	Heterogeneous Interfacial Properties of Inkâ€Jetâ€Printed Silver Nanoparticulate Electrode and Organic Semiconductor. Advanced Materials, 2008, 20, 3084-3089.	11.1	21
184	Sol-Gel derived Ga-In-Zn-O Semiconductor Layers for Solution-Processed Thin-Film Transistors. Journal of the Korean Physical Society, 2008, 53, 218-222.	0.3	21
185	Removal of Nitric Oxide (NO) by Perovskiteâ€Type Composite Catalytic Thick Film, La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â~δ} and Gadoliniaâ€Doped Ceria Electrolyte, Gd _{0.2} Ce _{0.8} O _{2â~δ} . Journal of the American Ceramic Society. 2005. 88. 79-84.	1.9	20
186	NO decomposition over the electrochemical cell of lanthanum stannate pyrochlore and YSZ composite electrode. Solid State Ionics, 2004, 175, 625-629.	1.3	20
187	Proton Conducting Organic-Inorganic Nanocomposite Membranes from MPTS and GPTS. Electrochemical and Solid-State Letters, 2005, 8, A191.	2.2	20
188	Influences of starting particulate materials on microstructural evolution and electrochemical activity of LSM-YSZ composite cathode for SOFC. Journal of Electroceramics, 2006, 17, 759-764.	0.8	20
189	Effects of atmospheric Ti (III) reduction on Nb2O5-doped Li4Ti5O12 anode materials for lithium ion batteries. Ceramics International, 2014, 40, 8869-8874.	2.3	20
190	Preparation of Nanocrystalline CeO2 by the Precipitation Method and Its Improved Methane Oxidation Activity. Journal of the American Ceramic Society, 2006, 89, 343-345.	1.9	19
191	Organic thin film transistors with ink-jet printed metal nanoparticle electrodes of a reduced channel length by laser ablation. Applied Physics Letters, 2007, 91, .	1.5	19
192	Highly active and stable Sr0.92Y0.08Ti1â^'xRuxO3â^'d in dry reforming for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 202-212.	3.8	19
193	Photopatternable Organosiloxane-Based Inorganicâ^'Organic SiO ₂ â^'ZrO ₂ Hybrid Dielectrics for Organic Thin Film Transistors. Journal of Physical Chemistry C, 2007, 111, 16083-16087.	1.5	18
194	Influence of silanol groups on the electrical performance of organic thin-film transistors utilizing organosiloxane-based organic–inorganic hybrid dielectrics. Nanotechnology, 2007, 18, 025204.	1.3	18
195	Inkjet-printing of nonsintered alumina-resin hybrid films and their dielectric properties. Journal of Applied Physics, 2010, 108, .	1.1	18
196	Hybrid copper complex-derived conductive patterns printed on polyimide substrates. Metals and Materials International, 2012, 18, 493-498.	1.8	18
197	Role of Anions in Aqueous Sol–Gel Process Enabling Flexible Cu(In,Ga)S2 Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17740-17747.	4.0	18
198	Low-temperature co-sintering technique for the fabrication of multi-layer functional ceramics for solid oxide fuel cells. Journal of the European Ceramic Society, 2016, 36, 1417-1425.	2.8	18

#	Article	IF	CITATIONS
199	Facile Sol–Gel-Derived Craterlike Dual-Functioning TiO ₂ Electron Transport Layer for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Description (1988) 10, 14649-14658.	4.0	18
200	Development of solid oxide fuel cells (SOFCs) by tape-casting and single-step co-firing of monolithic laminates. International Journal of Hydrogen Energy, 2014, 39, 2313-2319.	3.8	17
201	Crystal Facetâ€Controlled Efficient SnS Photocathodes for High Performance Biasâ€Free Solar Water Splitting. Advanced Science, 2021, 8, e2102458.	5.6	17
202	Fabrication of inorganic–organic hybrid films for optical waveguide. Journal of Non-Crystalline Solids, 2005, 351, 3530-3535.	1.5	16
203	Ceria interlayer-free Ba0.5Sr0.5Co0.8Fe0.2O3â^ΖSc0.1Zr0.9O1.95 composite cathode on zirconia based electrolyte for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38, 9320-9329.	3.8	16
204	Optimization of Ni–zirconia based anode support for robust and high-performance 5Â×Â5Âcm2 sized SOFC via tape-casting/co-firing technique and nano-structured anode. International Journal of Hydrogen Energy, 2015, 40, 2792-2799.	3.8	16
205	Defectâ€Free, Highly Uniform Washable Transparent Electrodes Induced by Selective Light Irradiation. Small, 2018, 14, e1800676.	5.2	16
206	Formation of photoresist-free patterned ZnO film containing nano-sized Ag by photochemical solution deposition. Applied Surface Science, 2006, 252, 7739-7742.	3.1	15
207	Laser-direct photoetching of metal thin film for the electrode of transistor. Applied Physics Letters, 2009, 95, 071104.	1.5	15
208	Phase stability of Sm0.5Sr0.5CoO3 cathodes for on-planar type, single-chamber, solid oxide fuel cells. Journal of Power Sources, 2009, 191, 269-274.	4.0	15
209	Enhanced compatibility between a copper nanowire-based transparent electrode and a hybrid perovskite absorber by poly(ethylenimine). Nanoscale, 2017, 9, 17207-17211.	2.8	15
210	Understanding the Influence of Anion Exchange on the Hole Transport Layer for Efficient and Humidity-Stable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 16730-16740.	3.2	15
211	Process Mechanism for Vacuumâ€Assisted Microfluidic Lithography with Ceramic Colloidal Suspensions. Journal of the American Ceramic Society, 2008, 91, 2143-2149.	1.9	14
212	Ink-jet printing of organic semiconductor for fabricating organic thin-film transistors: Film uniformity control by ink composition. Synthetic Metals, 2009, 159, 1381-1385.	2.1	14
213	Salami-like Electrospun Si Nanoparticle-ITO Composite Nanofibers with Internal Conductive Pathways for use as Anodes for Li-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27234-27241.	4.0	14
214	Template-directed fabrication of vertically aligned Cu2ZnSnS4 nanorod arrays for photoelectrochemical applications via a non-toxic solution process. Journal of Alloys and Compounds, 2017, 691, 457-465.	2.8	14
215	Electrochemical and microstructural characterization of polymeric resin-derived multilayered composite cathode for SOFC. Journal of Power Sources, 2005, 145, 272-277.	4.0	13
216	Aqueous Solution-Phase Selenized CuIn(S,Se) ₂ Thin Film Solar Cells Annealed under Inert Atmosphere. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22570-22577.	4.0	13

#	Article	IF	CITATIONS
217	Controlled Cracking of Multilayer Ceramic Bodies. Journal of the American Ceramic Society, 1999, 82, 2080-2086.	1.9	12
218	Facile Route to Aligned One-Dimensional Arrays of Colloidal Nanoparticles. Chemistry of Materials, 2007, 19, 1531-1533.	3.2	12
219	Thermoelectric and mechanical properties of Zn4Sb3 polycrystals sintered by spark plasma sintering. Journal of the Korean Physical Society, 2012, 60, 1735-1740.	0.3	12
220	Bendable thin-film transistors based on sol–gel derived amorphous Ga-doped In2O3 semiconductors. Superlattices and Microstructures, 2013, 59, 21-28.	1.4	12
221	Insertion of Vertically Aligned Nanowires into Living Cells by Inkjet Printing of Cells. Small, 2016, 12, 1446-1457.	5.2	12
222	Improved catalytic activity under internal reforming solid oxide fuel cell over new rhodium-doped perovskite catalyst. Journal of Power Sources, 2019, 423, 305-315.	4.0	12
223	Multifunctional Self-Combustion Additives Strategy to Fabricate Highly Responsive Hybrid Perovskite Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 41674-41686.	4.0	12
224	Fabrication of Atomic Force Microscope Probe with Low Spring Constant Using SU-8 Photoresist. Japanese Journal of Applied Physics, 2003, 42, L1171-L1174.	0.8	11
225	Co-planar type single chamber solid oxide fuel cell with micro-patterned electrodes. Journal of Electroceramics, 2006, 17, 689-693.	0.8	11
226	Low-Temperature Solution-Deposited Oxide Thin-Film Transistors Based on Solution-Processed Organic–Inorganic Hybrid Dielectrics. Japanese Journal of Applied Physics, 2010, 49, 05EB02.	0.8	11
227	Magnesiothermic Reductionâ€Enabled Synthesis of Siâ^'Ge Alloy Nanoparticles with a Canyonâ€Like Surface Structure for Liâ^'Ion Battery. ChemElectroChem, 2018, 5, 2729-2733.	1.7	11
228	Interfacial Dipole Layer Enables High-Performance Heterojunctions for Photoelectrochemical Water Splitting. ACS Energy Letters, 2022, 7, 1392-1402.	8.8	11
229	Fabrication of Patterned Inorganic-Organic Hybrid Film for the Optical Waveguide by Microfluidic Lithography. Journal of the American Ceramic Society, 2005, 88, 1033-1036.	1.9	10
230	Direct-write fabrication of integrated planar solid oxide fuel cells. Journal of Electroceramics, 2006, 17, 683-687.	0.8	10
231	Characterizing nano-scale electrocatalysis during partial oxidation of methane. Scientific Reports, 2014, 4, 3937.	1.6	10
232	Understanding the Critical Role of the Ag Nanophase in Boosting the Initial Reversibility of Transition Metal Oxide Anodes for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21715-21722.	4.0	10
233	Fabrication and characterization of low temperature polycrystalline silicon thin film transistors by ink-jet printed nickel-mediated lateral crystallization. Applied Physics Letters, 2009, 94, .	1.5	9
234	Influence of reduced substrate shunting current on cell performance in integrated planar solid oxide fuel cells. Ceramics International, 2012, 38, 695-700.	2.3	9

#	Article	IF	CITATIONS
235	Study on Thermal Evolution of the CuSe Phase in Nanoparticle-Based Absorber Layers for Solution-Processed Chalcopyrite Photovoltaic Devices. ACS Applied Materials & Emp; Interfaces, 2013, 5, 6930-6936.	4.0	9
236	Panoscopic alloying of cobalt in CeO2–ZrO2 solid solutions for superior oxygen-storage capacity. Acta Materialia, 2016, 113, 206-212.	3.8	9
237	Recent advances in high-performance semitransparent perovskite solar cells. Current Opinion in Electrochemistry, 2018, 11, 114-121.	2.5	9
238	Electrochemical decomposition of NO over composite electrodes on YSZ electrolyte. Journal of the European Ceramic Society, 2006, 26, 981-986.	2.8	8
239	Organic thin-film transistors using thin ormosil-based hybrid dielectric. Thin Solid Films, 2007, 515, 7701-7705.	0.8	8
240	Direct Photopatternable Organic–Inorganic Hybrid Materials as a Low Dielectric Constant Passivation Layer for Thin Film Transistor Liquid Crystal Displays. Journal of Physical Chemistry C, 2011, 115, 25056-25062.	1.5	8
241	Binary antisolvent bathing enabled highly efficient and uniform large-area perovskite solar cells. Chemical Engineering Journal, 2021, 423, 130078.	6.6	8
242	Low-Voltage Zinc-Oxide Thin-Film Transistors on a Conventional SiO2 Gate Insulator Grown by Radio-Frequency Magnetron Sputtering at Room Temperature. Journal of the Korean Physical Society, 2007, 51, 1999.	0.3	8
243	Revisiting the Role of the Tripleâ€Phase Boundary in Promoting the Oxygen Reduction Reaction in Aluminum–Air Batteries. Advanced Functional Materials, 2021, 31, 2101720.	7.8	7
244	Chemically Driven Enhancement of Oxygen Reduction Electrocatalysis in Supported Perovskite Oxides. Journal of Physical Chemistry Letters, 2017, 8, 235-242.	2.1	6
245	Universal Bifacial Stamping Approach Enabling Reverseâ€Graded Ruddlesdenâ€Popper 2D Perovskite Solar Cells. Small, 2022, 18, .	5.2	6
246	Fabrication of the Organic Thin-Film Transistors Based on Ink-Jet Printed Silver Electrodes. Molecular Crystals and Liquid Crystals, 2006, 459, 35/[315]-43/[323].	0.4	5
247	Effect of Glass Composition on the Optical Properties of Color Conversion Glasses for White LED. Korean Journal of Materials Research, 2012, 22, 669~674-669~674.	0.1	5
248	Microstructure control of an oxide superconductor on interaction of pinning centers and growing crystal surface. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2017-2018.	0.6	4
249	Microtransfer Molding of Gelcasting Suspensions to Fabricate Barrier Ribs for Plasma Display Panel. Journal of the American Ceramic Society, 2003, 86, 1969-1972.	1.9	4
250	Influence of water vapor on performance of co-planar single chamber solid oxide fuel cells. Journal of Power Sources, 2010, 195, 6504-6509.	4.0	4
251	Formation of yttria-stabilized zirconia nanotubes by atomic layer deposition toward efficient solid electrolytes. Nano Convergence, 2017, 4, 31.	6.3	4
252	Design and Preparation of SOFC Unit Cells Using Scandia-Stabilized Zirconia Electrolyte for Intermediate Temperature Operation. Journal of Fuel Cell Science and Technology, $2011, 8, .$	0.8	2

#	Article	IF	Citations
253	Influences of infiltrated resin on properties of printed electrodes on non-sintered ceramic films. Ceramics International, 2013, 39, 4961-4967.	2.3	2
254	Thermoelectric Properties of Non-Stoichiometric \hat{l}^2 -Zn3.83 + \hat{l} Sb3Polycrystals Sintered by a Hot-Press Method. Japanese Journal of Applied Physics, 2013, 52, 10MB06.	0.8	2
255	Co-planar single chamber solid oxide fuel cells with concentric electrodes. Journal of Asian Ceramic Societies, 2014, 2, 185-189.	1.0	2
256	Transparent Electronics: Allâ€Solutionâ€Processed Indiumâ€Free Transparent Composite Electrodes based on Ag Nanowire and Metal Oxide for Thinâ€Film Solar Cells (Adv. Funct. Mater. 17/2014). Advanced Functional Materials, 2014, 24, 2414-2414.	7.8	2
257	Influence of Grain Size and Room-Temperature Sputtering Condition on Optical and Electrical Properties of Undoped and Ga-Doped ZnO Thin Films. Journal of the Korean Physical Society, 2007, 51, 1987.	0.3	2
258	Single-Chamber Mini-Solid Oxide Fuel Cells Operated at a Lower Temperature. ECS Transactions, 2007, 7, 947-953.	0.3	1
259	Perovskite Solar Cells: Metalâ€Nanowireâ€Electrodeâ€Based Perovskite Solar Cells: Challenging Issues and New Opportunities (Adv. Energy Mater. 15/2017). Advanced Energy Materials, 2017, 7, .	10.2	1
260	Ultrastable Perovskites: Strainâ€Mediated Phase Stabilization: A New Strategy for Ultrastable αâ€CsPbI 3 Perovskite by Nanoconfined Growth (Small 21/2019). Small, 2019, 15, 1970114.	5.2	1
261	Photocathodes: Boosting Visible Light Harvesting in pâ€Type Ternary Oxides for Solarâ€ŧoâ€Hydrogen Conversion Using Inverse Opal Structure (Adv. Funct. Mater. 17/2019). Advanced Functional Materials, 2019, 29, 1970115.	7.8	1
262	Water Splitting: Fullerene as a Photoelectron Transfer Promoter Enabling Stable TiO 2 â€Protected Sb 2 Se 3 Photocathodes for Photoâ€Electrochemical Water Splitting (Adv. Energy Mater. 16/2019). Advanced Energy Materials, 2019, 9, 1970053.	10.2	1
263	Direct Photo-Patternable Organic-Inorganic Hybrid Gate Dielectric for Organic Thin-Film Transistors: Influence of the ZrO2 Content. Journal of the Korean Physical Society, 2009, 54, 754-759.	0.3	1
264	Effects of Surface Microstructure on Microwave Dielectric Properties of ZrO2-NiO added Ba(Zn1/3Ta2/3)O3Ceramics. Journal of the Korean Ceramic Society, 2008, 45, 701-706.	1.1	1
265	Metal-Semiconductor Contact Behavior of Solution-Processed ZnSnO Thin Film Transistors. Korean Journal of Materials Research, 2010, 20, 401-407.	0.1	1
266	Chiral Perovskites for Nextâ€Generation Photonics: From Chirality Transfer to Chiroptical Activity (Adv. Mater. 47/2021). Advanced Materials, 2021, 33, 2170369.	11.1	1
267	Elucidating the Synergistic Behavior of Orientationâ€Controlled SnS Nanoplates and Carbon Layers for Highâ€Performance Lithiumâ€and Sodiumâ€ion Batteries (Adv. Energy Mater. 8/2022). Advanced Energy Materials, 2022, 12, .	10.2	1
268	Thermal conductivity control of ZnO thermoelectric ceramics using hot-pressing method. , 0, , .		0
269	Reflectance spectroscopy of single photonic crystal island fabricated by ink-jet printing. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	O
270	Fabrication of Organic Thin Film Transistor Based on the Ink-Jet Printed Electrodes of Nano Silver Particles. Materials Research Society Symposia Proceedings, 2006, 937, 1.	0.1	0

#	Article	IF	CITATIONS
271	Influence of Polymeric Resin-Derived LSM Coated YSZ Composites on Cathodic Performance and Durability in SOFCs. ECS Transactions, 2007, 7, 869-874.	0.3	0
272	Patterning microconductor using nanosecond laser ablation of metal nanoparticle film., 2007,,.		0
273	Ink-jet printing process modeling using neural networks. , 2008, , .		0
274	Flexible Electronics: Fully Flexible Solution-Deposited ZnO Thin-Film Transistors (Adv. Mater. 38/2010). Advanced Materials, 2010, 22, n/a-n/a.	11.1	0
275	Facile microwave-assisted synthesis of multiphase CuInSe <inf>2</inf> nanoparticles and the role of secondary CuSe phase on photovoltaic device performance., 2013,,.		0
276	Preparation of Inks with Monodisperse Colloidal Silica and their Self-Assembly in a Ink-Jet Printed Droplet. Materials Research Society Symposia Proceedings, 2003, 776, 5171.	0.1	0
277	Optimization of the Patterning Processing and Electrical Characteristics of a Photopatternable Organosiloxane-Based Gate Dielectric for Organic Thin-Film Transistors. Journal of the Korean Physical Society, 2008, 53, 2154-2159.	0.3	0
278	Fabrication of Nanoporous Carbon Fibers by Electrospinning. Korean Journal of Materials Research, 2009, 19, 562-568.	0.1	0
279	Chemically Stable Semitransparent Perovskite Solar Cells with High Hydrogen Generation Rates Based on Photovoltaic–Photoelectrochemical Tandem Cells. Advanced Photonics Research, 2022, 3, .	1.7	0