List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5595236/publications.pdf

Version: 2024-02-01

		31902	43802
91	8,838	53	91
papers	citations	h-index	g-index
91	91	91	6591
) 1		0371
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 428, 131338.	6.6	133
2	Rational construction of Ag3PO4/WO3 step-scheme heterojunction for enhanced solar-driven photocatalytic performance of O2 evolution and pollutant degradation. Journal of Colloid and Interface Science, 2022, 608, 2549-2559.	5.0	45
3	Highly metallic Co-doped MoS2 nanosheets as an efficient cocatalyst to boost photoredox dual reaction for H2 production and benzyl alcohol oxidation. Carbon, 2022, 188, 70-80.	5.4	54
4	Carbon hollow spheres as cocatalyst of Cu-doped TiO2 nanoparticles for improved photocatalytic H2 generation. Rare Metals, 2022, 41, 2063-2073.	3.6	23
5	A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Metals, 2022, 41, 2387-2404.	3.6	40
6	Efficient photocatalytic hydrogen evolution coupled with benzaldehyde production over OD Cd0.5Zn0.5S/2D Ti3C2 Schottky heterojunction. Journal of Advanced Ceramics, 2022, 11, 1117-1130.	8.9	48
7	Facile synthesis of ZnCd-MOF/Ag3PO4 heterojunction for highly efficient photocatalytic oxygen evolution. Research on Chemical Intermediates, 2022, 48, 2821-2835.	1.3	3
8	Construction of LSPR-enhanced OD/2D CdS/MoO3â^ S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42, 87-96.	6.9	254
9	Synergistic effect of a noble metal free MoS2 co-catalyst and a ternary Bi2S3/MoS2/P25 heterojunction for enhanced photocatalytic H2 production. Ceramics International, 2021, 47, 8895-8903.	2.3	21
10	Oxygen Vacancies Induced Plasmonic Effect for Realizing Broadâ€Spectrumâ€Driven Photocatalytic H ₂ Evolution over an Sâ€Scheme CdS/W ₁₈ O ₄₉ Heterojunction. ChemNanoMat, 2021, 7, 44-49.	1.5	44
11	Internal electric field induced S–scheme heterojunction MoS2/CoAl LDH for enhanced photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 585, 470-479.	5.0	154
12	Unraveling the Roles of Hot Electrons and Cocatalyst toward Broad Spectrum Photocatalytic H ₂ Generation of g ₃ N ₄ Nanotube. Solar Rrl, 2021, 5, 2000504.	3.1	54
13	Evidencing Interfacial Charge Transfer in 2D CdS/2D MXene Schottky Heterojunctions toward Highâ€Efficiency Photocatalytic Hydrogen Production. Solar Rrl, 2021, 5, 2000414.	3.1	83
14	Construction of S-scheme MnO2@CdS heterojunction with core–shell structure as H2-production photocatalyst. Rare Metals, 2021, 40, 2381-2391.	3.6	60
15	Lattice-Matched CoP/CoS ₂ Heterostructure Cocatalyst to Boost Photocatalytic H ₂ Generation. Inorganic Chemistry, 2021, 60, 12506-12516.	1.9	40
16	The synergistic effect of P doping and Ni(II) electron cocatalyst boosting photocatalytic H2-evolution activity of g-C3N4. Ceramics International, 2021, 47, 23386-23395.	2.3	11
17	Hot-electron-assisted S-scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad-spectrum photocatalytic H2 generation. Chinese Journal of Catalysis, 2021, 42, 1478-1487.	6.9	99
18	Designing 0D/2D CdS nanoparticles/ g -C3N4 nanosheets heterojunction as efficient photocatalyst for improved H2-evolution. Surfaces and Interfaces, 2021, 26, 101312.	1.5	22

#	Article	IF	CITATIONS
19	Construction of UiO-66/Bi4O5Br2 Type-II Heterojunction to Boost Charge Transfer for Promoting Photocatalytic CO2 Reduction Performance. Frontiers in Chemistry, 2021, 9, 804204.	1.8	8
20	Highly efficient photocatalytic hydrogen evolution from OD/2D heterojunction of FeP nanoparticles/CdS nanosheets. Applied Surface Science, 2020, 505, 144042.	3.1	52
21	An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. Journal of Molecular Liquids, 2020, 297, 111826.	2.3	91
22	Biomass carbon modified flower-like Bi2WO6 hierarchical architecture with improved photocatalytic performance. Ceramics International, 2020, 46, 3623-3630.	2.3	43
23	Build-in electric field induced step-scheme TiO2/W18O49 heterojunction for enhanced photocatalytic activity under visible-light irradiation. Ceramics International, 2020, 46, 23-30.	2.3	99
24	In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268, 118382.	10.8	429
25	Solar-driven photocatalytic water oxidation of Ag3PO4/CNTs@MoSe2 ternary composite photocatalyst. Applied Surface Science, 2020, 505, 144613.	3.1	16
26	Difunctional hierarchical porous SiOC composites from silicone resin and rice husk for efficient adsorption and as a catalyst support. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124041.	2.3	21
27	Revealing and accelerating interfacial charge carrier dynamics in Z-scheme heterojunctions for highly efficient photocatalytic oxygen evolution. Applied Catalysis B: Environmental, 2020, 268, 118445.	10.8	69
28	Synergistic effect of Co(II)-hole and Pt-electron cocatalysts for enhanced photocatalytic hydrogen evolution performance of P-doped g-C3N4. Chinese Journal of Catalysis, 2020, 41, 72-81.	6.9	114
29	Insights into the Effect of Reactive Oxygen Species Regulation on Photocatalytic Performance via Construction of a Metal-Semiconductor Heterojunction. Journal of Nanoscience and Nanotechnology, 2020, 20, 3478-3485.	0.9	5
30	Development of magnetic imprinted PEDOT/CdS heterojunction photocatalytic nanoreactors: 3-Dimensional specific recognition for selectively photocatalyzing danofloxacin mesylate. Applied Catalysis B: Environmental, 2020, 268, 118433.	10.8	113
31	A latest overview on photocatalytic application of g-C3N4 based nanostructured materials for hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 337-379.	3.8	175
32	High-efficiency all-solid-state Z-scheme Ag3PO4/g-C3N4/MoSe2 photocatalyst with boosted visible-light photocatalytic performance for antibiotic elimination. Applied Surface Science, 2020, 530, 147234.	3.1	59
33	Mechanistic insights into charge carrier dynamics in MoSe2/CdS heterojunctions for boosted photocatalytic hydrogen evolution. Materials Today Physics, 2020, 15, 100261.	2.9	23
34	Oxygen doped g ₃ N ₄ with nitrogen vacancy for enhanced photocatalytic hydrogen evolution. Chemistry - an Asian Journal, 2020, 15, 3456-3461.	1.7	69
35	Construction OD TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity. Journal of Materials Science and Technology, 2020, 56, 196-205.	5. 6	126
36	Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. Journal of Industrial and Engineering Chemistry, 2020, 85, 1-33.	2.9	107

#	Article	IF	CITATIONS
37	Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Applied Catalysis B: Environmental, 2020, 275, 119144.	10.8	194
38	Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance. Applied Surface Science, 2019, 463, 9-17.	3.1	145
39	The synergetic effect of carbon nanotubes and MoS2 as co-catalysts for enhancing the photocatalytic oxygen evolution of Ag3PO4. Ceramics International, 2019, 45, 21120-21126.	2.3	27
40	Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction. Ceramics International, 2019, 45, 24146-24153.	2.3	152
41	Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction. Applied Surface Science, 2019, 493, 1142-1149.	3.1	83
42	Construction of Ti3C2 MXene/O-doped g-C3N4 2D-2D Schottky-junction for enhanced photocatalytic hydrogen evolution. Ceramics International, 2019, 45, 24656-24663.	2.3	113
43	Enhanced photocatalytic H2 evolution of ultrathin g-C3N4 nanosheets via surface shuttle redox. Journal of Alloys and Compounds, 2019, 810, 151918.	2.8	31
44	Improved H2-generation performance of Pt/CdS photocatalyst by a dual-function TiO2 mediator for effective electron transfer and hole blocking. Ceramics International, 2019, 45, 9807-9813.	2.3	53
45	Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Applied Catalysis B: Environmental, 2019, 256, 117867.	10.8	137
46	Constructing novel visible-light-driven ternary photocatalyst of AgBr nanoparticles decorated 2D/2D heterojunction of g-C3N4/BiOBr nanosheets with remarkably enhanced photocatalytic activity for water-treatment. Ceramics International, 2019, 45, 19197-19205.	2.3	46
47	Oxamide-modified g-C3N4 nanostructures: Tailoring surface topography for high-performance visible light photocatalysis. Chemical Engineering Journal, 2019, 374, 1064-1075.	6.6	218
48	An overview of semiconductors/layered double hydroxides composites: Properties, synthesis, photocatalytic and photoelectrochemical applications. Journal of Molecular Liquids, 2019, 289, 111114.	2.3	86
49	Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity. Journal of Materials Research, 2019, 34, 2024-2036.	1.2	15
50	Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2. Chinese Journal of Catalysis, 2019, 40, 380-389.	6.9	105
51	Remarkable Enhancement in Solar Oxygen Evolution from MoSe ₂ /Ag ₃ PO ₄ Heterojunction Photocatalyst via In Situ Constructing Interfacial Contact. ACS Sustainable Chemistry and Engineering, 2019, 7, 8466-8474.	3.2	92
52	Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P,) Tj ETQq0 0 0 rgBT /Ov 84-94.	erlock 10 10.8	Tf 50 147 Td 300
53	Graphitic carbon nitride based ternary nanocomposites: From synthesis to their applications in photocatalysis: A recent review. Journal of Molecular Liquids, 2019, 281, 634-654.	2.3	74
54	Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Applied Catalysis B: Environmental, 2019, 244, 240-249.	10.8	295

#	Article	IF	Citations
55	3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Applied Catalysis B: Environmental, 2018, 232, 562-573.	10.8	231
56	Fabrication of modified g-C 3 N 4 nanorod/Ag 3 PO 4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting. Applied Surface Science, 2018, 430, 301-308.	3.1	92
57	Fabrication of flower-like direct Z-scheme \hat{I}^2 -Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation. Applied Surface Science, 2018, 436, 162-171.	3.1	134
58	One-step electrospinning synthesis of TiO 2 $/g$ -C 3 N 4 nanofibers with enhanced photocatalytic properties. Applied Surface Science, 2018, 430, 253-262.	3.1	97
59	Solar photocatalytic water oxidation over Ag 3 PO 4 $\!\!\!/$ g-C 3 N 4 composite materials mediated by metallic Ag and graphene. Applied Surface Science, 2018, 430, 108-115.	3.1	89
60	MoS 2 quantum dots decorated g-C 3 N 4 /Ag heterostructures for enhanced visible light photocatalytic activity. Applied Surface Science, 2018, 430, 234-242.	3.1	131
61	Construction of Ternary rGO/Ag2CO3/AgBr Heterostructured Photocatalyst for Improved Photocatalytic Activity and Stability. Journal of Nanoscience and Nanotechnology, 2018, 18, 7867-7872.	0.9	1
62	Hierarchical structured ZnFe 2 O 4 @SiO 2 @TiO 2 composite for enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 2018, 761, 15-23.	2.8	60
63	Insights Into Highly Improved Solar-Driven Photocatalytic Oxygen Evolution Over Integrated Ag3PO4/MoS2 Heterostructures. Frontiers in Chemistry, 2018, 6, 123.	1.8	19
64	Porous MoP network structure as co-catalyst for H2 evolution over g-C3N4 nanosheets. Applied Surface Science, 2018, 462, 822-830.	3.1	120
65	Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. Applied Surface Science, 2018, 455, 403-409.	3.1	108
66	Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting. Applied Surface Science, 2018, 456, 369-378.	3.1	196
67	Construction of Ag 3 PO 4 /Ag 2 MoO 4 Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants. Chinese Journal of Catalysis, 2017, 38, 337-347.	6.9	105
68	AgBr and g-C 3 N 4 co-modified Ag 2 CO 3 photocatalyst: A novel multi-heterostructured photocatalyst with enhanced photocatalytic activity. Applied Surface Science, 2017, 391, 440-448.	3.1	120
69	Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: Direct Z-scheme mechanism for improved photocatalytic activity. Chinese Journal of Catalysis, 2017, 38, 2160-2170.	6.9	165
70	Shape-controllable synthesis and morphology-dependent photocatalytic properties of AgBr photocatalysts. Journal of Materials Science: Materials in Electronics, 2016, 27, 6955-6963.	1.1	18
71	Novel spindle-shaped nanoporous TiO2 coupled graphitic g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Ceramics International, 2016, 42, 18443-18452.	2.3	82
72	Fabrication of 3D CeVO 4 /graphene aerogels with efficient visible-light photocatalytic activity. Ceramics International, 2016, 42, 10487-10492.	2.3	50

#	Article	IF	Citations
73	Novel 3D flowerlike BiOCl0.7Br0.3 microspheres coupled with graphene sheets with enhanced visible-light photocatalytic activity for the degradation of rhodamine B. Ceramics International, 2016, 42, 5607-5616.	2.3	25
74	Surfactant-Assisted Solvothermal Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOBr Nanocomposite Photocatalyst. Nano, 2016, 11, 1650002.	0.5	5
75	Silver Phosphate/Graphitic Carbon Nitride as an Efficient Photocatalytic Tandem System for Oxygen Evolution. ChemSusChem, 2015, 8, 1350-1358.	3.6	178
76	Tuning the Morphology of g-C ₃ N ₄ for Improvement of Z-Scheme Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 15285-15293.	4.0	256
77	Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Applied Catalysis B: Environmental, 2015, 166-167, 231-240.	10.8	269
78	Ag/ZnO/graphene oxide heterostructure for the removal of rhodamine B by the synergistic adsorption–degradation effects. Ceramics International, 2015, 41, 4231-4237.	2.3	42
79	Synthesis and characterization of graphene oxide modified AgBr nanocomposites with enhanced photocatalytic activity and stability under visible light. Applied Surface Science, 2014, 319, 306-311.	3.1	57
80	Microstructure and phase transformation of Ti ₃ AC ₂ (A = Al, Si) in hydrofluoric acid solution. Crystal Research and Technology, 2014, 49, 813-819.	0.6	17
81	Synthesis, characterization and tribological properties of High purity Ti3SiC2 nanolamellas. Ceramics International, 2014, 40, 6219-6224.	2.3	13
82	Low temperature synthesis and photocatalytic properties of mesoporous TiO2 nanospheres. Journal of Alloys and Compounds, 2014, 591, 52-57.	2.8	32
83	Synthesis and improved photocatalytic activity of ultrathin TiO2 nanosheets with nearly 100% exposed (001) facets. Ceramics International, 2014, 40, 16817-16823.	2.3	33
84	Bifunctional TiO ₂ /Ag ₃ PO ₄ /graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria. RSC Advances, 2014, 4, 18627-18636.	1.7	167
85	Hydrothermal synthesis and visible-light photocatalytic activity of α-Fe2O3/TiO2 composite hollow microspheres. Ceramics International, 2013, 39, 8633-8640.	2.3	81
86	Morphology-controlled synthesis of Ag3PO4 microcubes with enhanced visible-light-driven photocatalytic activity. Ceramics International, 2013, 39, 9715-9720.	2.3	48
87	Graphene-spindle shaped TiO2 mesocrystal composites: Facile synthesis and enhanced visible light photocatalytic performance. Journal of Hazardous Materials, 2013, 261, 342-350.	6.5	111
88	Fabrication of Ag ₃ PO ₄ -Graphene Composites with Highly Efficient and Stable Visible Light Photocatalytic Performance. ACS Catalysis, 2013, 3, 363-369.	5.5	562
89	Facile synthesis of graphene oxide-enwrapped Ag3PO4 composites with highly efficient visible light photocatalytic performance. Materials Letters, 2013, 93, 28-31.	1.3	85
90	Template-assisted hydrothermal synthesis and photocatalytic activity of novel TiO2 hollow nanostructures. Ceramics International, 2013, 39, 4969-4974.	2.3	36

ARTICLE

Surface characterization and growth mechanism of laminated Ti3SiC2 crystals fabricated by hot isostatic pressing. Applied Surface Science, 2010, 256, 6986-6990.

3.1 30