List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5595202/publications.pdf Version: 2024-02-01

POREDT D HOLT

#	Article	IF	CITATIONS
1	Trophic Downgrading of Planet Earth. Science, 2011, 333, 301-306.	12.6	3,030
2	Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 2015, 1, e1500052.	10.3	2,541
3	Predation, apparent competition, and the structure of prey communities. Theoretical Population Biology, 1977, 12, 197-229.	1.1	2,068
4	TOWARD AN INTEGRATION OF LANDSCAPE AND FOOD WEB ECOLOGY:The Dynamics of Spatially Subsidized Food Webs. Annual Review of Ecology, Evolution, and Systematics, 1997, 28, 289-316.	6.7	1,922
5	Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 2010, 13, 1310-1324.	6.4	1,387
6	A Survey and Overview of Habitat Fragmentation Experiments. Conservation Biology, 2000, 14, 342-355.	4.7	1,100
7	A Theoretical Framework for Intraguild Predation. American Naturalist, 1997, 149, 745-764.	2.1	946
8	Intraguild predation: The dynamics of complex trophic interactions. Trends in Ecology and Evolution, 1992, 7, 151-154.	8.7	795
9	Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19659-19665.	7.1	702
10	Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution. Theoretical Population Biology, 1985, 28, 181-208.	1.1	676
11	WHEN DOES EVOLUTION BY NATURAL SELECTION PREVENT EXTINCTION?. Evolution; International Journal of Organic Evolution, 1995, 49, 201-207.	2.3	579
12	Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecology Letters, 2003, 6, 673-679.	6.4	527
13	Is habitat fragmentation good for biodiversity?. Biological Conservation, 2018, 226, 9-15.	4.1	430
14	Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches. Evolutionary Ecology, 1992, 6, 433-447.	1.2	395
15	Allee Effects, Invasion Pinning, and Species' Borders. American Naturalist, 2001, 157, 203-216.	2.1	384
16	The microevolutionary consequences of climate change. Trends in Ecology and Evolution, 1990, 5, 311-315.	8.7	359
17	Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecology Letters, 2003, 6, 797-802.	6.4	357
18	How Does Immigration Influence Local Adaptation? A Reexamination of a Familiar Paradigm. American Naturalist, 1997, 149, 563-572.	2.1	351

#	Article	IF	CITATIONS
19	RESOLVING ECOLOGICAL QUESTIONS THROUGH META-ANALYSIS: GOALS, METRICS, AND MODELS. Ecology, 1999, 80, 1105-1117.	3.2	341
20	Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecology, 2016, 31, 219-227.	4.2	336
21	The community context of species' borders: ecological and evolutionary perspectives. Oikos, 2005, 108, 28-46.	2.7	323
22	TROPHIC RANK AND THE SPECIES–AREA RELATIONSHIP. Ecology, 1999, 80, 1495-1504.	3.2	306
23	How should environmental stress affect the population dynamics of disease?. Ecology Letters, 2003, 6, 654-664.	6.4	290
24	A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	5.4	290
25	Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Frontiers in Ecology and the Environment, 2004, 2, 13-20.	4.0	253
26	Theoretical models of species' borders: single species approaches. Oikos, 2005, 108, 18-27.	2.7	252
27	Habitat Fragmentation and Movements of Three Small Mammals (Sigmodon, Microtus, and) Tj ETQq1 1 0.78431	.4 rgBT /0	Dverlgçk 10 T
28	A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C. PLoS Biology, 2009, 7, e1000210.	5.6	232
29	Island theory, matrix effects and species richness patterns in habitat fragments. Ecology Letters, 2002, 5, 619-623.	6.4	208
30	Food webs in space: On the interplay of dynamic instability and spatial processes. Ecological Research, 2002, 17, 261-273.	1.5	206
31	Parasite establishment in host communities. Ecology Letters, 2003, 6, 837-842.	6.4	205
32	Apparent Competition. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 447-471.	8.3	205
33	The influence of interspecific interactions on species range expansion rates. Ecography, 2014, 37, 1198-1209.	4.5	196
34	The Effects of Density Dependence and Immigration on Local Adaptation and Niche Evolution in a Black-Hole Sink Environment. Theoretical Population Biology, 1999, 55, 283-296.	1.1	195
35	APPARENT COMPETITION OR APPARENT MUTUALISM? SHARED PREDATION WHEN POPULATIONS CYCLE. Ecology, 1998, 79, 201-212.	3.2	176
36	Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecology Letters, 2005, 8, 328-335.	6.4	172

#	Article	IF	CITATIONS
37	Indirect effects of parasites in invasions. Functional Ecology, 2012, 26, 1262-1274.	3.6	172
38	Niche differentiation in Mexican birds: using point occurrences to detect ecological innovation. Ecology Letters, 2003, 6, 774-782.	6.4	165
39	Extinction filters mediate the global effects of habitat fragmentation on animals. Science, 2019, 366, 1236-1239.	12.6	164
40	Where am I and why? Synthesizing range biology and the ecoâ€evolutionary dynamics of dispersal. Oikos, 2014, 123, 5-22.	2.7	158
41	Evolutionary Consequences of Asymmetric Dispersal Rates. American Naturalist, 2002, 160, 333-347.	2.1	156
42	On the evolutionary stability of sink populations. Evolutionary Ecology, 1997, 11, 723-731.	1.2	152
43	ALTERNATIVE PREY AND THE DYNAMICS OF INTRAGUILD PREDATION: THEORETICAL PERSPECTIVES. Ecology, 2007, 88, 2706-2712.	3.2	149
44	Demographic constraints in evolution: Towards unifying the evolutionary theories of senescence and niche conservatism. Evolutionary Ecology, 1996, 10, 1-11.	1.2	147
45	SECONDARY SUCCESSION IN AN EXPERIMENTALLY FRAGMENTED LANDSCAPE: COMMUNITY PATTERNS ACROSS SPACE AND TIME. Ecology, 2005, 86, 1267-1279.	3.2	142
46	WHEN IS BIOLOGICAL CONTROL EVOLUTIONARILY STABLE (OR IS IT)?. Ecology, 1997, 78, 1673-1683.	3.2	141
47	Connecting models, data, and concepts to understand fragmentation's ecosystemâ€wide effects. Ecography, 2017, 40, 1-8.	4.5	137
48	Emergent neutrality. Trends in Ecology and Evolution, 2006, 21, 531-533.	8.7	134
49	The inflationary effects of environmental fluctuations in source-sink systems. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14872-14877.	7.1	128
50	Temporal Autocorrelation Can Enhance the Persistence and Abundance of Metapopulations Comprised of Coupled Sinks. American Naturalist, 2005, 166, 246-261.	2.1	128
51	Vegetation Dynamics in an Experimentally Fragmented Landscape. Ecology, 1995, 76, 1610-1624.	3.2	124
52	From Metapopulation Dynamics to Community Structure. , 1997, , 149-164.		118
53	Trophic interactions and range limits: the diverse roles of predation. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1435-1442.	2.6	104
54	Integrating Biogeography with Contemporary Niche Theory. Trends in Ecology and Evolution, 2017, 32, 488-499.	8.7	102

#	Article	IF	CITATIONS
55	Ecoâ€evolutionary dynamics in fragmented landscapes. Ecography, 2017, 40, 9-25.	4.5	101
56	Metapopulations and metacommunities: combining spatial and temporal perspectives in plant ecology. Journal of Ecology, 2012, 100, 88-103.	4.0	100
57	Consumer Fronts, Global Change, and Runaway Collapse in Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 503-538.	8.3	97
58	Predation Can Increase the Prevalence of Infectious Disease. American Naturalist, 2007, 169, 690-699.	2.1	95
59	ORICINAL ARTICLE: Genetics, adaptation, and invasion in harsh environments. Evolutionary Applications, 2010, 3, 97-108.	3.1	92
60	FIRE GENERATES SPATIAL GRADIENTS IN HERBIVORY: AN EXAMPLE FROM A FLORIDA SANDHILL ECOSYSTEM. Ecology, 2005, 86, 587-593.	3.2	87
61	Plant productivity and soil nitrogen as a function of grazing, migration and fire in an African savanna. Journal of Ecology, 2007, 95, 115-128.	4.0	86
62	Different evolutionary histories underlie congruent species richness gradients of birds and mammals. Journal of Biogeography, 2012, 39, 825-841.	3.0	84
63	Temporal Variation Can Facilitate Niche Evolution in Harsh Sink Environments. American Naturalist, 2004, 164, 187-200.	2.1	78
64	Refugeâ€mediated apparent competition in plant–consumer interactions. Ecology Letters, 2010, 13, 11-20.	6.4	78
65	Allee Effects, Immigration, and the Evolution of Species' Niches. American Naturalist, 2004, 163, 253-262.	2.1	62
66	Ecosystem context and historical contingency in apex predator recoveries. Science Advances, 2016, 2, e1501769.	10.3	61
67	THE INTERACTION OF HABITAT FRAGMENTATION, PLANT, AND SMALL MAMMAL SUCCESSION IN AN OLD FIELD. Ecological Monographs, 2000, 70, 383-400.	5.4	60
68	Theoretical Perspectives on the Statics and Dynamics of Species' Borders in Patchy Environments. American Naturalist, 2011, 178, S6-S25.	2.1	57
69	Impacts of environmental variability in open populations and communities: "inflation―in sink environments. Theoretical Population Biology, 2003, 64, 315-330.	1.1	51
70	Towards a cohesive, holistic view of top predation: a definition, synthesis and perspective. Oikos, 2014, 123, 1234-1243.	2.7	50
71	Tropical forests can maintain hyperdiversity because of enemies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 581-586.	7.1	50
72	Towards a unified framework for connectivity that disentangles movement and mortality in space and time. Ecology Letters, 2019, 22, 1680-1689.	6.4	48

#	Article	IF	CITATIONS
73	Extending the principles of community ecology to address the epidemiology of host-pathogen systems. , 2006, , 6-27.		43
74	Effects of productivity, disturbance, and ecosystem size on food hain length: insights from a metacommunity model of intraguild predation. Ecological Research, 2012, 27, 481-493.	1.5	42
75	HABITAT SELECTION UNDER TEMPORAL HETEROGENEITY: EXORCIZING THE GHOST OF COMPETITION PAST. Ecology, 2000, 81, 2622-2630.	3.2	40
76	Distributional Patterns in St. Croix Sphaerodactylus Lizards: The Taxon Cycle in Action. Biotropica, 1979, 11, 189.	1.6	36
77	The Relation of Density Regulation to Habitat Specialization, Evolution of a Species' Range, and the Dynamics of Biological Invasions. American Naturalist, 2008, 172, 233-247.	2.1	36
78	Trophic Rank and the Species-Area Relationship. Ecology, 1999, 80, 1495.	3.2	34
79	Predation and the Evolutionary Dynamics of Species Ranges. American Naturalist, 2011, 178, 488-500.	2.1	30
80	Landscape structure and genetic architecture jointly impact rates of niche evolution. Ecography, 2014, 37, 1218-1229.	4.5	28
81	The effects of immigration and environmental variability on the persistence of an inferior competitor. Ecology Letters, 2007, 10, 574-585.	6.4	27
82	Partitioning multiple facets of beta diversity in a tropical stream macroalgal metacommunity. Journal of Biogeography, 2020, 47, 1765-1780.	3.0	27
83	The interplay of movement and spatiotemporal variation in transmission degrades pandemic control. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30104-30106.	7.1	27
84	Responses to alternative rainfall regimes and antipoaching in a migratory system. Ecological Applications, 2010, 20, 381-397.	3.8	24
85	Dynamical mechanism for coexistence of dispersing species without trade-offs in spatially extended ecological systems. Physical Review E, 2001, 63, 051905.	2.1	23
86	Allee effects, aggregation, and invasion success. Theoretical Ecology, 2013, 6, 153-164.	1.0	22
87	Overcoming Allee effects through evolutionary, genetic, and demographic rescue. Journal of Biological Dynamics, 2015, 9, 15-33.	1.7	22
88	Effects of chronic pesticide stress on wildlife populations in complex landscapes: Processes at multiple scales. Environmental Toxicology and Chemistry, 1996, 15, 420-426.	4.3	21
89	Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biological Reviews, 2021, 96, 2446-2460.	10.4	21
90	Interspecific interactions and range limits: contrasts among interaction types. Theoretical Ecology, 2017, 10, 167-179.	1.0	20

#	Article	IF	CITATIONS
91	Modeling R0 for Pathogens with Environmental Transmission: Animal Movements, Pathogen Populations, and Local Infectious Zones. International Journal of Environmental Research and Public Health, 2019, 16, 954.	2.6	20
92	Reflections on niches and numbers. Ecography, 2020, 43, 387-390.	4.5	20
93	Direct plant–predator interactions as determinants of food chain dynamics. Journal of Theoretical Biology, 2013, 339, 47-57.	1.7	19
94	Relationship between conservation biology and ecology shown through machine reading of 32,000 articles. Conservation Biology, 2020, 34, 721-732.	4.7	19
95	Emerging pathogens can suppress invaders and promote native species recovery. Biological Invasions, 2018, 20, 5-8.	2.4	18
96	Position in the distributional range and sensitivity to forest fragmentation in birds: a case history from the Atlantic forest, Brazil. Bird Conservation International, 2010, 20, 392-399.	1.3	14
97	The prevalence and persistence of sigma virus, a biparentally transmitted parasite of. Evolutionary Ecology Research, 2011, 13, 323-345.	2.0	14
98	The role of pathogen shedding in linking within- and between-host pathogen dynamics. Mathematical Biosciences, 2015, 270, 249-262.	1.9	13
99	Backward bifurcation and oscillations in a nested immuno-eco-epidemiological model. Journal of Biological Dynamics, 2018, 12, 51-88.	1.7	13
100	Pulsed Immigration Events Can Facilitate Adaptation to Harsh Sink Environments. American Naturalist, 2019, 194, 316-333.	2.1	13
101	Within-host pathogen dynamics: Some ecological and evolutionary consequences of transients, dispersal mode, and within-host spatial heterogeneity. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 2006, , 45-66.	0.0	13
102	The influence of imperfect matching habitat choice on evolution in source–sink environments. Evolutionary Ecology, 2015, 29, 887-904.	1.2	12
103	Nonlinear thresholds in the effects of island area on functional diversity in woody plant communities. Journal of Ecology, 2021, 109, 2177-2189.	4.0	12
104	Making a virtue out of a necessity: Hurricanes and the resilience of community organization. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2005-2006.	7.1	11
105	When the species–time–area relationship meets island biogeography: Diversity patterns of avian communities over time and space in a subtropical archipelago. Journal of Biogeography, 2018, 45, 664-675.	3.0	11
106	Environmental fluctuations can promote evolutionary rescue in high-extinction-risk scenarios. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201144.	2.6	11
107	Disease in Invasive Plant Populations. Annual Review of Phytopathology, 2020, 58, 97-117.	7.8	11
108	Metapopulation capacity determines food chain length in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11

#	Article	IF	CITATIONS
109	Resources, mortality, and disease ecology: importance of positive feedbacks between host growth rate and pathogen dynamics. Israel Journal of Ecology and Evolution, 2015, 61, 37-49.	0.6	10
110	Threshold levels of generalist predation determine consumer response to resource pulses. Oikos, 2015, 124, 1436-1443.	2.7	10
111	Evolutionary Rescue in a Linearly Changing Environment: Limits on Predictability. Bulletin of Mathematical Biology, 2019, 81, 4821-4839.	1.9	9
112	A Community-Ecology Framework for Understanding Vector and Vector-Borne Disease Dynamics. Israel Journal of Ecology and Evolution, 2010, 56, 251-262.	0.6	8
113	Green roofs may cast shadows. Israel Journal of Ecology and Evolution, 2016, 62, 15-22.	0.6	8
114	Toward ecoevolutionary dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
115	Use it or lose it. Nature, 2000, 407, 689-690.	27.8	7
116	Up against the edge: invasive species as testbeds for basic questions about evolution in heterogeneous environments. Molecular Ecology, 2009, 18, 4347-4348.	3.9	7
117	Which Coexistence Mechanisms Should Biogeographers Quantify? A Reply to Alexander et al Trends in Ecology and Evolution, 2018, 33, 145-147.	8.7	7
118	The evolution of habitat construction with and without phenotypic plasticity*. Evolution; International Journal of Organic Evolution, 2021, 75, 1650-1664.	2.3	7
119	Temporal variation may have diverse impacts on range limits. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210016.	4.0	7
120	IJEE Soapbox: Prince Kropotkin meets the Hutchinsonian niche. Israel Journal of Ecology and Evolution, 2009, 55, 1-10.	0.6	5
121	The interplay of nested biotic interactions and the abiotic environment regulates populations of a hypersymbiont. Journal of Animal Ecology, 2019, 88, 1998-2010.	2.8	5
122	A rodent herbivore reduces its predation risk through ecosystem engineering. Current Biology, 2022, 32, 1869-1874.e4.	3.9	5
123	Apparent Competition and Vector-Host Interactions. Israel Journal of Ecology and Evolution, 2010, 56, 393-416.	0.6	4
124	Dynamics of low and high pathogenic avian influenza in wild and domestic bird populations. Journal of Biological Dynamics, 2016, 10, 104-139.	1.7	4
125	The influence of herbivory and weather on the vital rates of two closely related cactus species. Ecology and Evolution, 2017, 7, 6996-7009.	1.9	4
126	Reply to Cannon and Lerdau: Maintenance of tropical forest tree diversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8106-8106.	7.1	4

#	Article	IF	CITATIONS
127	The species–area relationship in ant ecology. Journal of Biogeography, 2021, 48, 1824-1841.	3.0	4
128	Invasive grass litter suppresses a native grass species and promotes disease. Ecosphere, 2022, 13, .	2.2	4
129	Disturbanceâ€induced emigration: an overlooked mechanism that reduces metapopulation extinction risk. Ecology, 2021, 102, e03423.	3.2	3
130	Ilkka Hanski, The "Compleat Ecologistâ€: An Homage to His Contributions to the Spatial Dimension of Food Web Interactions. Annales Zoologici Fennici, 2017, 54, 51-70.	0.6	2
131	Long-term studies are needed to reveal the effects of pathogen accumulation on invaded plant communities. Biological Invasions, 2018, 20, 11-12.	2.4	2
132	Looks can be deceiving: ecologically similar exotics have different impacts on a native competitor. Oecologia, 2019, 190, 927-940.	2.0	2
133	Environmental fluctuations dampen the effects of clonal reproduction on evolutionary rescue. Journal of Evolutionary Biology, 2021, 34, 710-722.	1.7	2
134	Do I build or do I move? Adaptation by habitat construction versus habitat choice [*] . Evolution; International Journal of Organic Evolution, 2022, 76, 414-428.	2.3	2
135	IJEE Soapbox: Ecology and evolution as professions, And as liberal arts. Israel Journal of Ecology and Evolution, 2009, 55, 307-313.	0.6	1
136	Unstable predator–prey dynamics permits the coexistence of generalist and specialist predators, and the maintenance of partial preferences. Israel Journal of Ecology and Evolution, 2013, 59, 27-36.	0.6	1
137	III.14. Evolution of the Ecological Niche. , 2013, , 288-297.		1
138	Inference Towards the Best Explanation: Reflections on the Issue of Climate Change. Israel Journal of Ecology and Evolution, 2015, 61, 1-12.	0.6	1
139	A meditation on life, death, and meaning. Israel Journal of Ecology and Evolution, 2016, 62, 113-117.	0.6	1
140	Are Predators Good for Your Health? Evaluating Evidence for Top-down Regulation of Zoonotic Disease Reservoirs. Frontiers in Ecology and the Environment, 2004, 2, 13.	4.0	1
141	IJEE Soapbox: Cooperation, Competition, and the Social Organization of the Scientific Enterprise. Israel Journal of Ecology and Evolution, 2010, 56, 1-7.	0.6	0
142	IJEE Soapbox: A Never-Ending Struggle: Becoming a Better Ecologist and Evolutionary Biologist. Israel Journal of Ecology and Evolution, 2010, 57, 279-288.	0.6	0
143	Plants in Trophic Webs. , 0, , 556-567.		0