Andreas Schmid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5594911/publications.pdf

Version: 2024-02-01

210 papers

10,540 citations

23567 58 h-index 43889 91 g-index

219 all docs

219 docs citations

219 times ranked 8201 citing authors

#	Article	IF	CITATIONS
1	The production of fine chemicals by biotransformations. Current Opinion in Biotechnology, 2002, 13, 548-556.	6.6	636
2	Practical issues in the application of oxygenases. Trends in Biotechnology, 2003, 21, 170-177.	9.3	231
3	Biofilms as living catalysts in continuous chemical syntheses. Trends in Biotechnology, 2012, 30, 453-465.	9.3	225
4	Towards a Biocatalyst for (<i>S</i>)-Styrene Oxide Production: Characterization of the Styrene Degradation Pathway of <i>Pseudomonas</i> sp. Strain VLB120. Applied and Environmental Microbiology, 1998, 64, 2032-2043.	3.1	217
5	Microbial biofilms: a concept for industrial catalysis?. Trends in Biotechnology, 2009, 27, 636-643.	9.3	191
6	Biochemical Characterization of StyAB from Pseudomonas sp. Strain VLB120 as a Two-Component Flavin-Diffusible Monooxygenase. Journal of Bacteriology, 2004, 186, 5292-5302.	2.2	189
7	Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chemical Society Reviews, 2013, 42, 6346.	38.1	188
8	The use of enzymes in the chemical industry in Europe. Current Opinion in Biotechnology, 2002, 13, 359-366.	6.6	175
9	Single-Cell Analysis in Biotechnology, Systems Biology, and Biocatalysis. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 129-155.	6.8	174
10	Chemical and biological single cell analysis. Current Opinion in Biotechnology, 2010, 21, 12-20.	6.6	173
11	Stereospecific Biocatalytic Epoxidation:  The First Example of Direct Regeneration of a FAD-Dependent Monooxygenase for Catalysis. Journal of the American Chemical Society, 2003, 125, 8209-8217.	13.7	158
12	Heme-iron oxygenases: powerful industrial biocatalysts?. Current Opinion in Chemical Biology, 2008, 12, 177-186.	6.1	158
13	Pilot-scale production of (S)-styrene oxide from styrene by recombinantEscherichia coli synthesizing styrene monooxygenase. Biotechnology and Bioengineering, 2002, 80, 33-41.	3.3	149
14	Oxidative biotransformations using oxygenases. Current Opinion in Chemical Biology, 2002, 6, 136-144.	6.1	146
15	The First Synthetic Application of a Monooxygenase Employing Indirect Electrochemical NADH Regeneration. Angewandte Chemie - International Edition, 2001, 40, 169-171.	13.8	145
16	Guidelines for reporting of biocatalytic reactions. Trends in Biotechnology, 2010, 28, 171-180.	9.3	144
17	Metabolic response of <i>Pseudomonas putida</i> during redox biocatalysis in the presence of a second octanol phase. FEBS Journal, 2008, 275, 5173-5190.	4.7	135
18	Selected <i>Pseudomonas putida</i> Strains Able To Grow in the Presence of High Butanol Concentrations. Applied and Environmental Microbiology, 2009, 75, 4653-4656.	3.1	126

#	Article	IF	Citations
19	Production of enantiopure styrene oxide by recombinantEscherichia coli synthesizing a two-component styrene monooxygenase., 2000, 69, 91-100.		125
20	Integrated Biocatalytic Synthesis on Gram Scale: The Highly Enantioselective Preparation of Chiral Oxiranes with Styrene Monooxygenase. Advanced Synthesis and Catalysis, 2001, 343, 732-737.	4.3	121
21	Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. Journal of Biotechnology, 2004, 113, 183-210.	3.8	121
22	Metabolic and Transcriptional Response to Cofactor Perturbations in Escherichia coli. Journal of Biological Chemistry, 2010, 285, 17498-17506.	3.4	115
23	Response of Pseudomonas putida KT2440 to Increased NADH and ATP Demand. Applied and Environmental Microbiology, 2011, 77, 6597-6605.	3.1	110
24	Electrochemical Regeneration of Oxidoreductases for Cell-free Biocatalytic Redox Reactions. Biocatalysis and Biotransformation, 2004, 22, 63-88.	2.0	109
25	Microbial biofilms: New catalysts for maximizing productivity of long-term biotransformations. Biotechnology and Bioengineering, 2007, 98, 1123-1134.	3.3	107
26	Direct Terminal Alkylaminoâ€Functionalization <i>via</i> Multistep Biocatalysis in One Recombinant Wholeâ€Cell Catalyst. Advanced Synthesis and Catalysis, 2013, 355, 1693-1697.	4.3	103
27	The efficiency of recombinantEscherichia coli as biocatalyst for stereospecific epoxidation. Biotechnology and Bioengineering, 2006, 95, 501-512.	3.3	102
28	Engineering the productivity of recombinant <i>Escherichia coli</i> for limonene formation from glycerol in minimal media. Biotechnology Journal, 2014, 9, 1000-1012.	3.5	101
29	Characterization and Application of Xylene Monooxygenase for Multistep Biocatalysis. Applied and Environmental Microbiology, 2002, 68, 560-568.	3.1	100
30	Outer Membrane Protein AlkL Boosts Biocatalytic Oxyfunctionalization of Hydrophobic Substrates in Escherichia coli. Applied and Environmental Microbiology, 2012, 78, 5724-5733.	3.1	100
31	Use of the two-liquid phase concept to exploit kinetically controlled multistep biocatalysis. Biotechnology and Bioengineering, 2003, 81, 683-694.	3.3	99
32	Direct Electrochemical Regeneration of Monooxygenase Subunits for Biocatalytic Asymmetric Epoxidation. Journal of the American Chemical Society, 2005, 127, 6540-6541.	13.7	93
33	Carbon metabolism limits recombinant protein production in <i>Pichia pastoris</i> and Bioengineering, 2011, 108, 1942-1953.	3.3	93
34	The Functional Structure of Central Carbon Metabolism in Pseudomonas putida KT2440. Applied and Environmental Microbiology, 2014, 80, 5292-5303.	3.1	93
35	Analytical biotechnology: from single molecule and single cell analyses to population dynamics of metabolites and cells. Current Opinion in Biotechnology, 2010, 21, 1-3.	6.6	91
36	Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process. Green Chemistry, 2010, 12, 815.	9.0	91

#	Article	IF	Citations
37	Quantitative physiology of ⟨i⟩Pichia pastoris⟨ i⟩ during glucoseâ€limited highâ€cell density fedâ€batch cultivation for recombinant protein production. Biotechnology and Bioengineering, 2010, 107, 357-368.	3.3	90
38	Coupling of Biocatalytic Asymmetric Epoxidation with NADH Regeneration in Organic–Aqueous Emulsions. Angewandte Chemie - International Edition, 2004, 43, 2163-2166.	13.8	88
39	Metabolic capacity estimation of <i>Escherichia coli</i> as a platform for redox biocatalysis: constraintâ€based modeling and experimental verification. Biotechnology and Bioengineering, 2008, 100, 1050-1065.	3.3	84
40	Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry. Analytical and Bioanalytical Chemistry, 2009, 394, 791-800.	3.7	79
41	Xylene Monooxygenase Catalyzes the Multistep Oxygenation of Toluene and Pseudocumene to Corresponding Alcohols, Aldehydes, and Acids in Escherichia coli JM101. Journal of Biological Chemistry, 2000, 275, 10085-10092.	3.4	78
42	Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nature Communications, 2015, 6, 6655.	12.8	76
43	An integrated process for the production of toxic catechols from toxic phenols based on a designer biocatalyst., 1999, 62, 641-648.		75
44	NADH Availability Limits Asymmetric Biocatalytic Epoxidation in a Growing Recombinant <i>Escherichia coli</i> Strain. Applied and Environmental Microbiology, 2008, 74, 1436-1446.	3.1	74
45	Purification and Characterization of 2-Hydroxybiphenyl 3-Monooxygenase, a Novel NADH-dependent, FAD-containing Aromatic Hydroxylase from Pseudomonas azelaica HBP1. Journal of Biological Chemistry, 1997, 272, 24257-24265.	3.4	73
46	Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnology and Bioengineering, 2010, 105, 705-717.	3.3	70
47	Efficient production of the Nylon 12 monomer i‰-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli. Metabolic Engineering, 2016, 36, 1-9.	7.0	70
48	Wholeâ€cellâ€based CYP153A6â€catalyzed (<i>S</i>)â€limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Biotechnology and Bioengineering, 2013, 110, 1282-1292.	3.3	69
49	TADH, the thermostable alcohol dehydrogenase from Thermus sp. ATN1: a versatile new biocatalyst for organic synthesis. Applied Microbiology and Biotechnology, 2008, 81, 263-273.	3.6	68
50	Changing the Substrate Reactivity of 2-Hydroxybiphenyl 3-Monooxygenase from Pseudomonas azelaica HBP1 by Directed Evolution. Journal of Biological Chemistry, 2002, 277, 5575-5582.	3.4	66
51	Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerantPseudomonas sp. strain VLB120ΔC. Biotechnology and Bioengineering, 2007, 98, 1219-1229.	3.3	66
52	Resting cells of recombinant <i>E. coli</i> show high epoxidation yields on energy source and high sensitivity to product inhibition. Biotechnology and Bioengineering, 2012, 109, 1109-1119.	3.3	66
53	Prediction of the Adaptability of Pseudomonas putida DOT-T1E to a Second Phase of a Solvent for Economically Sound Two-Phase Biotransformations. Applied and Environmental Microbiology, 2005, 71, 6606-6612.	3.1	63
54	Preparative scale production of 3-substituted catechols using a novel monooxygenase from Pseudomonas azelaica HBP 1. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 87-93.	1.8	62

#	Article	IF	CITATIONS
55	Biotransformation in Double-Phase Systems: Physiological Responses of Pseudomonas putida DOT-T1E to a Double Phase Made of Aliphatic Alcohols and Biosynthesis of Substituted Catechols. Applied and Environmental Microbiology, 2004, 70, 3637-3643.	3.1	62
56	Engineering of Pseudomonas taiwanensis VLB120 for Constitutive Solvent Tolerance and Increased Specific Styrene Epoxidation Activity. Applied and Environmental Microbiology, 2014, 80, 6539-6548.	3.1	62
57	Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol. Bioresource Technology, 2019, 282, 171-178.	9.6	62
58	Reaction and catalyst engineering to exploit kinetically controlled wholeâ€eell multistep biocatalysis for terminal FAME oxyfunctionalization. Biotechnology and Bioengineering, 2014, 111, 1820-1830.	3.3	61
59	Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites. Microbial Cell Factories, 2014, 13, 2.	4.0	60
60	Overcoming the Gas–Liquid Mass Transfer of Oxygen by Coupling Photosynthetic Water Oxidation with Biocatalytic Oxyfunctionalization. Angewandte Chemie - International Edition, 2017, 56, 15146-15149.	13.8	60
61	Chemical biotechnology for the specific oxyfunctionalization of hydrocarbons on a technical scale. Biotechnology and Bioengineering, 2003, 82, 833-842.	3.3	59
62	The Envirostat – a new bioreactor concept. Lab on A Chip, 2009, 9, 576-585.	6.0	58
63	Quantification of metabolic limitations during recombinant protein production in Escherichia coli. Journal of Biotechnology, 2011, 155, 178-184.	3.8	58
64	The microbial cell $\hat{a}\in$ " functional unit for energy dependent multistep biocatalysis. Current Opinion in Biotechnology, 2014, 30, 178-189.	6.6	57
65	Electroenzymatic Asymmetric Reduction ofrac-3-Methylcyclohexanone to (1S,3S)-3-Methylcyclohexanol in Organic/Aqueous Media Catalyzed by a Thermophilic Alcohol Dehydrogenase. Advanced Synthesis and Catalysis, 2007, 349, 1337-1340.	4.3	56
66	<scp>D /scp>â€Xylose assimilation via the <scp>W /scp>eimberg pathway by solventâ€tolerant <scp><i>P</i> /i> /i> 2015, 17, 156-170.</scp></scp></scp>	3.8	55
67	Lightâ€Dependent and Aerationâ€Independent Gramâ€Scale Hydroxylation of Cyclohexane to Cyclohexanol by CYP450 Harboring <i>Synechocystis</i> sp. PCC 6803. Biotechnology Journal, 2019, 14, e1800724.	3 . 5	55
68	Real-Time Solvent Tolerance Analysis of <i>Pseudomonas </i> sp. Strain VLB120Î"C Catalytic Biofilms. Applied and Environmental Microbiology, 2011, 77, 1563-1571.	3.1	54
69	Systems biotechnology – Rational wholeâ€cell biocatalyst and bioprocess design. Engineering in Life Sciences, 2010, 10, 384-397.	3.6	51
70	Complete genome sequence of Pseudomonas sp. strain VLB120 a solvent tolerant, styrene degrading bacterium, isolated from forest soil. Journal of Biotechnology, 2013, 168, 729-730.	3.8	51
71	Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Biotechnology and Bioengineering, 2010, 106, 516-527.	3.3	50
72	Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from <i>Acidovorax</i> sp. CHX100 in recombinant <i>P. taiwanensis</i> VLB120 biofilms. Biotechnology and Bioengineering, 2016, 113, 52-61.	3.3	50

#	Article	IF	Citations
73	Biocatalytic Production of Catechols Using a High Pressure Tube-in-Tube Segmented Flow Microreactor. Organic Process Research and Development, 2014, 18, 1516-1526.	2.7	49
74	Engineered catalytic biofilms for continuous large scale production of <i>n</i>)â€octanol and (<i>S</i>)â€styrene oxide. Biotechnology and Bioengineering, 2013, 110, 424-436.	3.3	47
75	Applications of Multiphasic Microreactors for Biocatalytic Reactions. Organic Process Research and Development, 2016, 20, 361-370.	2.7	47
76	Coupled chemoenzymatic transfer hydrogenation catalysis for enantioselective reduction and oxidation reactions. Tetrahedron: Asymmetry, 2005, 16, 3512-3519.	1.8	45
77	Kinetic Analysis of Terminal and Unactivated CH Bond Oxyfunctionalization in Fatty Acid Methyl Esters by Monooxygenaseâ€Based Wholeâ€Cell Biocatalysis. Advanced Synthesis and Catalysis, 2011, 353, 3485-3495.	4.3	45
78	C1q/TNF-related protein-3 (CTRP-3) attenuates lipopolysaccharide (LPS)-induced systemic inflammation and adipose tissue Erk-1/-2 phosphorylation in mice in vivo. Biochemical and Biophysical Research Communications, 2014, 452, 8-13.	2.1	45
79	Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes. Microbial Cell Factories, 2012, 11, 106.	4.0	44
80	Biocatalytic conversion of cycloalkanes to lactones using an inâ€vivo cascade in <i>Pseudomonas taiwanensis</i> VLB120. Biotechnology and Bioengineering, 2018, 115, 312-320.	3.3	44
81	The glycerophospholipid inventory of <i>Pseudomonas putida</i> is conserved between strains and enables growth conditionâ€related alterations. Microbial Biotechnology, 2012, 5, 45-58.	4.2	42
82	Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments. Lab on A Chip, 2013, 13, 397-408.	6.0	42
83	Preparative regio- and chemoselective functionalization of hydrocarbons catalyzed by cell free preparations of 2-hydroxybiphenyl 3-monooxygenase. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 455-462.	1.8	41
84	Glycerophospholipid profiling by highâ€performance liquid chromatography/mass spectrometry using exact mass measurements and multiâ€stage mass spectrometric fragmentation experiments in parallel. Rapid Communications in Mass Spectrometry, 2009, 23, 1636-1646.	1.5	41
85	Microfluidic singleâ€cell analysis links boundary environments and individual microbial phenotypes. Environmental Microbiology, 2015, 17, 1839-1856.	3.8	41
86	Miniaturizing Biocatalysis: Enzymeâ€Catalyzed Reactions in an Aqueous/Organic Segmented Flow Capillary Microreactor. Advanced Synthesis and Catalysis, 2011, 353, 2511-2521.	4.3	40
87	Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors. Biotechnology and Bioengineering, 2014, 111, 1831-1840.	3.3	39
88	Technical bias of microcultivation environments on single-cell physiology. Lab on A Chip, 2015, 15, 1822-1834.	6.0	39
89	Productive Asymmetric Styrene Epoxidation Based on a Next Generation Electroenzymatic Methodology. Advanced Synthesis and Catalysis, 2009, 351, 2505-2515.	4.3	38
90	Beyond the bulk: disclosing the life of single microbial cells. FEMS Microbiology Reviews, 2017, 41, 751-780.	8.6	38

#	Article	IF	Citations
91	Productivity of Selective Electroenzymatic Reduction and Oxidation Reactions: Theoretical and Practical Considerations. Advanced Synthesis and Catalysis, 2006, 348, 2015-2026.	4.3	37
92	Dynamics of benzoate metabolism in Pseudomonas putida KT2440. Metabolic Engineering Communications, 2016, 3, 97-110.	3.6	37
93	Production host selection for asymmetric styrene epoxidation: <i>Escherichia coli</i> vs. solvent-tolerant <i>Pseudomonas</i> Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1125-1133.	3.0	36
94	Isolated Microbial Single Cells and Resulting Micropopulations Grow Faster in Controlled Environments. Applied and Environmental Microbiology, 2012, 78, 7132-7136.	3.1	35
95	Subpopulation-proteomics in prokaryotic populations. Current Opinion in Biotechnology, 2013, 24, 79-87.	6.6	35
96	Simple enzymatic procedure for <scp>l</scp> â€carnosine synthesis: wholeâ€cell biocatalysis and efficient biocatalyst recycling. Microbial Biotechnology, 2010, 3, 74-83.	4.2	34
97	Maximizing the stability of metabolic engineeringâ€derived wholeâ€cell biocatalysts. Biotechnology Journal, 2017, 12, 1600170.	3.5	34
98	Proline Availability Regulates Proline-4-Hydroxylase Synthesis and Substrate Uptake in Proline-Hydroxylating Recombinant Escherichia coli. Applied and Environmental Microbiology, 2013, 79, 3091-3100.	3.1	33
99	Bile Acid Metabolome after an Oral Lipid Tolerance Test by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). PLoS ONE, 2016, 11, e0148869.	2.5	33
100	Recombinant Chlorobenzene Dioxygenase fromPseudomonas sp. P51: A Biocatalyst for Regioselective Oxidation of Aromatic Nitriles. Advanced Synthesis and Catalysis, 2005, 347, 1060-1072.	4.3	32
101	Process and Catalyst Design Objectives for Specific Redox Biocatalysis. Advances in Applied Microbiology, 2006, 59, 53-91.	2.4	32
102	Synthesis of 3-tert-butylcatechol by an engineered monooxygenase. Biotechnology and Bioengineering, 2003, 81, 518-524.	3.3	31
103	Analysis of Two-Liquid-Phase Multistep Biooxidation Based on a Process Model:Â Indications for Biological Energy Shortage. Organic Process Research and Development, 2006, 10, 628-643.	2.7	31
104	Efficient hydroxyproline production from glucose in minimal media by <i>Corynebacterium glutamicum </i> . Biotechnology and Bioengineering, 2015, 112, 322-330.	3.3	31
105	Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow. Biotechnology and Bioengineering, 2017, 114, 281-290.	3.3	31
106	Monitoring and control of microbioreactors: An expert opinion on development needs. Biotechnology Journal, 2012, 7, 1308-1314.	3.5	30
107	Maximization of cell viability rather than biocatalyst activity improves wholeâ€cell ï‰â€oxyfunctionalization performance. Biotechnology and Bioengineering, 2017, 114, 874-884.	3.3	30
108	Enzyme Catalysis in an Aqueous/Organic Segment Flow Microreactor: Ways to Stabilize Enzyme Activity. Langmuir, 2010, 26, 9152-9159.	3.5	29

#	Article	IF	CITATIONS
109	An artificial TCA cycle selects for efficient αâ€ketoglutarate dependent hydroxylase catalysis in engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2017, 114, 1511-1520.	3.3	29
110	Suitability of Recombinant Escherichia coli and Pseudomonas putida Strains for Selective Biotransformation of m -Nitrotoluene by Xylene Monooxygenase. Applied and Environmental Microbiology, 2005, 71, 6624-6632.	3.1	28
111	Cell physiology rather than enzyme kinetics can determine the efficiency of cytochrome P450-catalyzed C–H-oxyfunctionalization. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1359-1370.	3.0	27
112	Adipocyte chemerin release is induced by insulin without being translated to higher levels <i>in vivo</i> . European Journal of Clinical Investigation, 2012, 42, 1213-1220.	3.4	27
113	Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously. Analytical and Bioanalytical Chemistry, 2012, 403, 2291-2305.	3.7	27
114	Regioselective Biocatalytic Aromatic Hydroxylation in a Gas–Liquid Multiphase Tubeâ€inâ€Tube Reactor. ChemCatChem, 2014, 6, 2567-2576.	3.7	27
115	Enantioselective Substrate Binding in a Monooxygenase Protein Model by Molecular Dynamics and Docking. Biophysical Journal, 2006, 91, 3206-3216.	0.5	26
116	A rapid, reliable, and automatable lab-on-a-chip interface. Lab on A Chip, 2009, 9, 1455.	6.0	26
117	Evidence of functional bile acid signaling pathways in adipocytes. Molecular and Cellular Endocrinology, 2019, 483, 1-10.	3.2	26
118	Single cell analysis reveals unexpected growth phenotype of <i>S. cerevisiae</i> . Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 130-139.	1.5	25
119	Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: Verification and complementation of hypotheses derived from transcriptomics. Journal of Biotechnology, 2009, 143, 124-129.	3.8	25
120	Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands. Journal of Biotechnology, 2013, 163, 194-203.	3.8	25
121	Novel cyclohexane monooxygenase from Acidovorax sp. CHX100. Applied Microbiology and Biotechnology, 2015, 99, 6889-6897.	3.6	25
122	Coupling limonene formation and oxyfunctionalization by mixedâ€culture resting cell fermentation. Biotechnology and Bioengineering, 2015, 112, 1738-1750.	3.3	25
123	Guiding efficient microbial synthesis of non-natural chemicals by physicochemical properties of reactants. Current Opinion in Biotechnology, 2015, 35, 52-62.	6.6	25
124	Metabolic network capacity of Escherichia coli for Krebs cycle-dependent proline hydroxylation. Microbial Cell Factories, 2015, 14, 108.	4.0	25
125	Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production. Biotechnology and Bioengineering, 2016, 113, 1305-1314.	3.3	25
126	Quantifying a Biocatalytic Product from a Few Living Microbial Cells Using Microfluidic Cultivation Coupled to FT-ICR-MS. Analytical Chemistry, 2019, 91, 7012-7018.	6.5	25

#	Article	IF	Citations
127	Evidence of an anti-inflammatory toll-like receptor 9 (TLR 9) pathway in adipocytes. Journal of Endocrinology, 2019, 240, 325-343.	2.6	25
128	Efficient phase separation and product recovery in organicâ€equeous bioprocessing using supercritical carbon dioxide. Biotechnology and Bioengineering, 2010, 107, 642-651.	3.3	24
129	Stabilization of single species <i>Synechocystis</i> biofilms by cultivation under segmented flow. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1083-1089.	3.0	24
130	Quantification and regulation of the adipokines resistin and progranulin in human cerebrospinal fluid. European Journal of Clinical Investigation, 2016, 46, 15-26.	3.4	24
131	Innate Immunity of Adipose Tissue in Rodent Models of Local and Systemic <i>Staphylococcus aureus</i> Infection. Mediators of Inflammation, 2017, 2017, 1-13.	3.0	24
132	Kinetic Analysis of <scp>L</scp> â€Carnosine Formation by βâ€Aminopeptidases. Advanced Synthesis and Catalysis, 2010, 352, 407-415.	4.3	23
133	Hypothesis-driven omics integration. Nature Chemical Biology, 2010, 6, 485-487.	8.0	22
134	Towards real time analysis of protein secretion from single cells. Lab on A Chip, 2009, 9, 3047.	6.0	21
135	Conversion Efficiencies of a Few Living Microbial Cells Detected at a High Throughput by Droplet-Based ESI-MS. Analytical Chemistry, 2020, 92, 10700-10708.	6.5	21
136	Development of a high performance electrochemical cofactor regeneration module and its application to the continuous reduction of FAD. Journal of Molecular Catalysis B: Enzymatic, 2014, 103, 100-105.	1.8	20
137	Solid support membraneâ€nerated catalytic biofilm reactor for the continuous synthesis of (<i>S</i>)â€styrene oxide at gram scale. Biotechnology Journal, 2014, 9, 1339-1349.	3.5	19
138	In Situ O2Generation for Biocatalytic Oxyfunctionalization Reactions. ChemCatChem, 2018, 10, 5366-5371.	3.7	19
139	Integration of biocatalyst and process engineering for sustainable and efficient ⟨i⟩n⟨ i⟩â€butanol production. Engineering in Life Sciences, 2015, 15, 4-19.	3.6	18
140	Umgehung des Gasâ€flù⁄4ssig‧tofftransports von Sauerstoff durch Kopplung der photosynthetischen Wasseroxidation an eine biokatalytische Oxyfunktionalisierung. Angewandte Chemie, 2017, 129, 15343-15346.	2.0	18
141	Single Cell Analytics: An Overview. Advances in Biochemical Engineering/Biotechnology, 2010, 124, 99-122.	1.1	16
142	Variability in subpopulation formation propagates into biocatalytic variability of engineered Pseudomonas putida strains. Frontiers in Microbiology, 2015, 6, 1042.	3.5	16
143	Catalytic <i>Pseudomonas taiwanensis</i> VLB120î°C biofilms thrive in a continuous pure styrene generated by multiphasic segmented flow in a capillary microreactor. Journal of Flow Chemistry, 2016, 6, 39-42.	1.9	16
144	Stabilization and scaleâ€up of photosynthesisâ€driven ωâ€hydroxylation of nonanoic acid methyl ester by twoâ€liquid phase wholeâ€cell biocatalysis. Biotechnology and Bioengineering, 2019, 116, 1887-1900.	3.3	16

#	Article	IF	CITATIONS
145	Constitutively solventâ€tolerant <i>Pseudomonas taiwanensis</i> VLB120â^† <i>C</i> â^† <i>titgV</i> supports particularly highâ€styrene epoxidation activities when grown under glucose excess conditions. Biotechnology and Bioengineering, 2019, 116, 1089-1101.	3.3	16
146	Role of progranulin in adipose tissue innate immunity. Cytokine, 2020, 125, 154796.	3.2	16
147	An Inert Continuous Microreactor for the Isolation and Analysis of a Single Microbial Cell. Micromachines, 2015, 6, 1836-1855.	2.9	15
148	The dynamic influence of cells on the formation of stable emulsions in organic–aqueous biotransformations. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1011-1026.	3.0	15
149	Guiding bioprocess design by microbial ecology. Current Opinion in Microbiology, 2015, 25, 25-32.	5.1	15
150	Hyperadherence of <i>Pseudomonas taiwanensis</i> VLB120Î"C increases productivity of (<i>S</i>)â€styrene oxide formation. Microbial Biotechnology, 2017, 10, 735-744.	4.2	15
151	The application of constitutively solventâ€ŧolerant <i>P. taiwanensis</i> VLB120Δ <i>C</i> Δ <i>tigV</i> for stereospecific epoxidation of toxic styrene alleviates carrier solvent use. Biotechnology Journal, 2017, 12, 1600558.	3.5	15
152	Growth of <i>Pseudomonas taiwanensis</i> <scp>VLB</scp> 120â^†C biofilms in the presence of <i>n</i> êbutanol. Microbial Biotechnology, 2017, 10, 745-755.	4.2	15
153	Progranulin serum levels and gene expression in subcutaneous vs visceral adipose tissue of severely obese patients undergoing bariatric surgery. Clinical Endocrinology, 2019, 91, 400-410.	2.4	15
154	Serum Levels and Adipose Tissue Gene Expression of Cathelicidin Antimicrobial Peptide (CAMP) in Obesity and During Weight Loss. Hormone and Metabolic Research, 2021, 53, 169-177.	1.5	15
155	î"9-Tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids. Journal of Biotechnology, 2015, 211, 68-76.	3.8	14
156	Making variability less variable: matching expression system and host for oxygenase-based biotransformations. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 851-866.	3.0	14
157	Whole-cell biocatalysis using the Acidovorax sp. CHX100 Δ6HX for the production of ω-hydroxycarboxylic acids from cycloalkanes. New Biotechnology, 2021, 60, 200-206.	4.4	14
158	Meteorin-Like Protein (Metrnl) in Obesity, during Weight Loss and in Adipocyte Differentiation. Journal of Clinical Medicine, 2021, 10, 4338.	2.4	14
159	Maximizing Photosynthesis-Driven Baeyer–Villiger Oxidation Efficiency in Recombinant Synechocystis sp. PCC6803. Frontiers in Catalysis, 2022, 1, .	3.9	14
160	E. coli JM109 pHBP461, a recombinant biocatalyst for the regioselective monohydroxylation of ortho-substituted phenols to their corresponding 3-substituted catechols. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 311-316.	1.8	13
161	Enzymeâ€Catalyzed Laurolactam Synthesis <i>via</i> Intramolecular Amide Bond Formation in Aqueous Solution. Advanced Synthesis and Catalysis, 2011, 353, 2501-2510.	4.3	13
162	Hydrophobic Formic Acid Esters for Cofactor Regeneration in Aqueous/Organic Two-Liquid Phase Systems. Topics in Catalysis, 2014, 57, 385-391.	2.8	13

#	Article	IF	Citations
163	The <i> MOX </i> > promoter in <i> Hansenula polymorpha </i> > is ultrasensitive to glucose-mediated carbon catabolite repression. FEMS Yeast Research, 2016, 16, fow 067.	2.3	13
164	Pro-inflammatory chemokines CCL2, chemerin, IP-10 and RANTES in human serum during an oral lipid tolerance test. Cytokine, 2016, 80, 56-63.	3.2	13
165	Comparison of microbial hosts and expression systems for mammalian CYP1A1 catalysis. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 275-287.	3.0	12
166	Multistep Synthesis of (<i>S</i>)â€3â€Hydroxyisobutyric Acid from Glucose using <i>Pseudomonas taiwanensis</i> VLB120 B83 T7 Catalytic Biofilms. Advanced Synthesis and Catalysis, 2015, 357, 1919-1927.	4.3	12
167	Highly Efficient Access to (S)â€Sulfoxides Utilizing a Promiscuous Flavoprotein Monooxygenase in a Wholeâ€Cell Biocatalyst Format. ChemCatChem, 2020, 12, 4664-4671.	3.7	12
168	Quantification and regulation of adipsin in human cerebrospinal fluid (<scp>CSF</scp>). Clinical Endocrinology, 2016, 84, 194-202.	2.4	11
169	Evaluation of self-sustaining cyanobacterial biofilms for technical applications. Biofilm, 2022, 4, 100073.	3.8	11
170	Miniaturized octupole cytometry for cell type independent trapping and analysis. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	10
171	Downregulation of CTRP-3 by Weight Loss In Vivo and by Bile Acids and Incretins in Adipocytes In Vitro. International Journal of Molecular Sciences, 2020, 21, 8168.	4.1	10
172	Systematic Quantification of Neurotrophic Adipokines RBP4, PEDF, and Clusterin in Human Cerebrospinal Fluid and Serum. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e2239-e2250.	3.6	10
173	Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 339-351.	3.0	9
174	Mixed-trophies biofilm cultivation in capillary reactors. MethodsX, 2019, 6, 1822-1831.	1.6	9
175	Regioselective aromatic hydroxylation of quinaldine by water using quinaldine 4-oxidase in recombinant Pseudomonas putida. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1067-1077.	3.0	8
176	Pressure-resistant and reversible on-tube-sealing for microfluidics. Microfluidics and Nanofluidics, 2011, 10, 679-684.	2.2	8
177	Integrated organic–aqueous biocatalysis and product recovery for quinaldine hydroxylation catalyzed by living recombinant <i>Pseudomonas putida</i> Biotechnology, 2012, 39, 1049-1059.	3.0	8
178	î"9-Tetrahydrocannabinolic acid synthase: The application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis. Journal of Biotechnology, 2016, 233, 42-48.	3.8	8
179	Trans-4-hydroxy-L-proline production by the cyanobacterium Synechocystis sp. PCC 6803. Metabolic Engineering Communications, 2021, 12, e00155.	3.6	8
180	Evidence of a Muscle–Brain Axis by Quantification of the Neurotrophic Myokine METRNL (Meteorin-Like Protein) in Human Cerebrospinal Fluid and Serum. Journal of Clinical Medicine, 2021, 10, 3271.	2.4	8

#	Article	IF	CITATIONS
181	A p-nitrothiophenolate screening system for the directed evolution of a two-component epoxygenase (StyAB). Journal of Molecular Catalysis B: Enzymatic, 2008, 50, 121-127.	1.8	7
182	Trophic regulation of autoaggregation in Pseudomonas taiwanensis VLB120. Applied Microbiology and Biotechnology, 2016, 100, 347-360.	3.6	7
183	Regulation of CAMP (cathelicidin antimicrobial peptide) expression in adipocytes by TLR 2 and 4. Innate Immunity, 2021, 27, 184-191.	2.4	7
184	Integrated One-Pot Enrichment and Immobilization of Styrene Monooxygenase (StyA) Using SEPABEAD EC-EA and EC-Q1A Anion-Exchange Carriers. Molecules, 2011, 16, 5975-5988.	3.8	6
185	Process boundaries of irreversible scCO ₂ â€assisted phase separation in biphasic wholeâ€cell biocatalysis. Biotechnology and Bioengineering, 2015, 112, 2316-2323.	3.3	6
186	A three-step method for analysing bacterial biofilm formation under continuous medium flow. Applied Microbiology and Biotechnology, 2015, 99, 6035-6047.	3.6	6
187	The adipokine C1q/TNF-related protein-3 (CTRP-3) inhibits Toll-like receptor (TLR)-induced expression of Cathelicidin antimicrobial peptide (CAMP) in adipocytes. Cytokine, 2021, 148, 155663.	3.2	6
188	Regulation of natriuretic peptides postprandially inÂvivo and of their receptors in adipocytes by fatty acids inÂvitro. Molecular and Cellular Endocrinology, 2018, 473, 225-234.	3.2	5
189	l-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain. Biotechnology for Biofuels, 2018, 11, 231.	6.2	5
190	C1q/TNF-Related Protein 3 (CTRP-3) Deficiency of Adipocytes Affects White Adipose Tissue Mass but Not Systemic CTRP-3 Concentrations. International Journal of Molecular Sciences, 2021, 22, 1670.	4.1	5
191	Suppressor of Cytokine Signaling 1 is Involved in Gene Regulation Which Controls the Survival of Ly6Clow Monocytes in Mice. Cellular Physiology and Biochemistry, 2019, 52, 336-353.	1.6	5
192	Impact of oral lipid and glucose tolerance tests on the postprandial concentrations of angiopoietin-like proteins (Angptl) 3 and 4. European Journal of Nutrition, 2022, 61, 1919-1929.	3.9	5
193	Improvement of Type 2 Diabetes Mellitus and Attenuation of NAFLD Are Associated with the Success of Obesity Therapy. Journal of Clinical Medicine, 2022, 11, 1756.	2.4	5
194	Challenging biological limits with microfluidic single cell analysis. Microbial Biotechnology, 2015, 8, 23-25.	4.2	4
195	Data on mixed trophies biofilm for continuous cyclohexane oxidation to cyclohexanol using Synechocystis sp. PCC 6803. Data in Brief, 2019, 25, 104059.	1.0	4
196	Anti-Inflammatory Effects of $C1q/Tumor$ Necrosis Factor-Related Protein 3 (CTRP3) in Endothelial Cells, 2021, 10, 2146.	4.1	4
197	Direct infusion-SIM as fast and robust method for absolute protein quantification in complex samples. EuPA Open Proteomics, 2015, 7, 20-26.	2.5	3
198	How to Assess the Clinical Relevance of Novel RET Missense Variants in the Absence of Functional Studies?. European Thyroid Journal, 2016, 5, 73-77.	2.4	3

#	Article	IF	Citations
199	Enrichment and identification of \hat{l} " 9 -Tetrahydrocannabinolic acid synthase from Pichia pastoris culture supernatants. Data in Brief, 2015, 4, 641-649.	1.0	2
200	Generating Electric Current by Bioartificial Photosynthesis. Advances in Biochemical Engineering/Biotechnology, 2017, 167, 361-393.	1.1	2
201	Towards a Biocatalyst for (<i>S</i>)-Styrene Oxide Production: Characterization of the Styrene Degradation Pathway of <i>Pseudomonas</i> Sp. Strain VLB120. Applied and Environmental Microbiology, 1998, 64, 3546-3546.	3.1	2
202	Research update for articles published in EJCI in 2012. European Journal of Clinical Investigation, 2014, 44, 1010-1023.	3.4	1
203	Comparison of the Microstructure of Stimuli Responsive Zwitterionic PNIPAM-co-Sulfobetaine Microgels with PNIPAM Microgels and Classical Hard-Sphere Systems. Zeitschrift Fur Physikalische Chemie, 2014, 228, 1033-1052.	2.8	1
204	Anaerobic C–H Oxyfunctionalization: Coupling of Nitrate Reduction and Quinoline Hydroxylation in Recombinant Pseudomonas putida. Biotechnology Journal, 2019, 14, 1800615.	3.5	1
205	Role of the Steroid Sulfate Uptake Transporter Soat (Slc10a6) in Adipose Tissue and 3T3-L1 Adipocytes. Frontiers in Molecular Biosciences, 2022, 9, 863912.	3.5	1
206	Hydrophobic Outer Membrane Pores Boost Testosterone Hydroxylation by Cytochrome P450 BM3 Containing Cells. Frontiers in Catalysis, 2022, 2, .	3.9	1
207	Mikrobielle Prozesse., 2011,, 477-505.		0
208	Quantitative single cell analysis of isolated microbes in controlled microenvironments. New Biotechnology, 2014, 31, S61.	4.4	0
209	The Metabolic Flux Probe (MFP)—Secreted Protein as a Non-Disruptive Information Carrier for 13C-Based Metabolic Flux Analysis. International Journal of Molecular Sciences, 2021, 22, 9438.	4.1	0
210	Systemorientierte Raffung von Prüfstandssignalen für Fahrwerksgelenke unter Berücksichtigung lokaler VerschleiÄŸvorgÃ ¤ ge*. Materialpruefung/Materials Testing, 2010, 52, 470-475.	2.2	0