List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5594865/publications.pdf Version: 2024-02-01

Ιωνιμα Ζησιι

#	Article	IF	CITATIONS
1	Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nature Medicine, 2003, 9, 1085-1090.	30.7	999
2	Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magnetic Resonance in Medicine, 2009, 61, 1441-1450.	3.0	555
3	Amide proton transfer (APT) contrast for imaging of brain tumors. Magnetic Resonance in Medicine, 2003, 50, 1120-1126.	3.0	544
4	Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nature Medicine, 2011, 17, 130-134.	30.7	448
5	Chemical exchange saturation transfer imaging and spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 2006, 48, 109-136.	7.5	415
6	Amide proton transfer imaging of human brain tumors at 3T. Magnetic Resonance in Medicine, 2006, 56, 585-592.	3.0	308
7	Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magnetic Resonance in Medicine, 2008, 60, 842-849.	3.0	304
8	Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. NeuroImage, 2013, 77, 114-124.	4.2	266
9	Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magnetic Resonance in Medicine, 2004, 51, 945-952.	3.0	258
10	APTâ€weighted MRI: Techniques, current neuro applications, and challenging issues. Journal of Magnetic Resonance Imaging, 2019, 50, 347-364.	3.4	224
11	Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor. ACS Nano, 2017, 11, 444-452.	14.6	216
12	Mechanism of magnetization transfer during on-resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids. Magnetic Resonance in Medicine, 2003, 49, 440-449.	3.0	200
13	MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neurolmage, 2010, 51, 616-622.	4.2	197
14	Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain. Magnetic Resonance in Medicine, 2007, 58, 786-793.	3.0	196
15	Threeâ€dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. Journal of Magnetic Resonance Imaging, 2013, 38, 1119-1128.	3.4	181
16	In vivo threeâ€dimensional wholeâ€brain pulsed steadyâ€state chemical exchange saturation transfer at 7 T. Magnetic Resonance in Medicine, 2012, 67, 1579-1589.	3.0	176
17	Amide proton transfer MR imaging of prostate cancer: A preliminary study. Journal of Magnetic Resonance Imaging, 2011, 33, 647-654.	3.4	163
18	A Solidâ€State Fibriform Supercapacitor Boosted by Host–Guest Hybridization between the Carbon Nanotube Scaffold and MXene Nanosheets. Small, 2018, 14, e1801203.	10.0	158

#	Article	IF	CITATIONS
19	Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magnetic Resonance in Medicine, 2011, 66, 1033-1041.	3.0	151
20	Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain. Magnetic Resonance in Medicine, 2010, 64, 638-644.	3.0	134
21	Applying amide proton transferâ€weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. Journal of Magnetic Resonance Imaging, 2016, 44, 456-462.	3.4	132
22	Predicting IDH mutation status in grade II gliomas using amide proton transferâ€weighted (APTw) MRI. Magnetic Resonance in Medicine, 2017, 78, 1100-1109.	3.0	126
23	Simplified quantitative description of amide proton transfer (APT) imaging during acute ischemia. Magnetic Resonance in Medicine, 2007, 57, 405-410.	3.0	122
24	Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semiâ€solid magnetization transfer reference (EMR) signals: Application to a rat glioma model at 4.7 tesla. Magnetic Resonance in Medicine, 2016, 75, 137-149.	3.0	119
25	Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 Tesla. Magnetic Resonance in Medicine, 2016, 75, 1630-1639	3.0	117
26	APTâ€weighted and NOEâ€weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses. Magnetic Resonance in Medicine, 2013, 70, 320-327.	3.0	115
27	Measurement of tissue oxygen extraction ratios from venous bloodT2: Increased precision and validation of principle. Magnetic Resonance in Medicine, 2001, 46, 282-291.	3.0	112
28	Two-Compartment Exchange Model for Perfusion Quantification Using Arterial Spin Tagging. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 440-455.	4.3	106
29	Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1500-1516.	4.3	104
30	Identifying Recurrent Malignant Glioma after Treatment Using Amide Proton Transfer-Weighted MR Imaging: A Validation Study with Image-Guided Stereotactic Biopsy. Clinical Cancer Research, 2019, 25, 552-561.	7.0	104
31	Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 Tesla. European Radiology, 2016, 26, 64-71.	4.5	93
32	Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts. NMR in Biomedicine, 2008, 21, 489-497.	2.8	92
33	Wholeâ€brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using lowâ€power steadyâ€state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. Journal of Magnetic Resonance Imaging, 2016, 44, 41-50.	3.4	91
34	Assessing Amide Proton Transfer (APT) MRI Contrast Origins in 9ÂL Gliosarcoma in the Rat Brain Using Proteomic Analysis. Molecular Imaging and Biology, 2015, 17, 479-487.	2.6	87
35	Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume. European Radiology, 2017, 27, 3181-3189.	4.5	86
36	Quantitative characterization of nuclear overhauser enhancement and amide proton transfer effects in the human brain at 7 tesla. Magnetic Resonance in Medicine, 2013, 70, 1070-1081.	3.0	85

JINYUAN ZHOU

#	Article	IF	CITATIONS
37	Amide proton transfer-weighted magnetic resonance image-guided stereotactic biopsy in patients with newly diagnosed gliomas. European Journal of Cancer, 2017, 83, 9-18.	2.8	82
38	Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla. European Radiology, 2014, 24, 2631-2639.	4.5	81
39	Review and consensus recommendations on clinical <scp>APT</scp> â€weighted imaging approaches at <scp>3T</scp> : Application to brain tumors. Magnetic Resonance in Medicine, 2022, 88, 546-574.	3.0	79
40	Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging. Magnetic Resonance in Medicine, 2017, 77, 1853-1865.	3.0	76
41	Improving the detection sensitivity of p <scp>H</scp> â€weighted amide proton transfer <scp>MRI</scp> in acute stroke patients using extrapolated semisolid magnetization transfer reference signals. Magnetic Resonance in Medicine, 2017, 78, 871-880.	3.0	74
42	Defining an Acidosis-Based Ischemic Penumbra from pH-Weighted MRI. Translational Stroke Research, 2012, 3, 76-83.	4.2	73
43	Optimization of pulse train presaturation for CEST imaging in clinical scanners. Magnetic Resonance in Medicine, 2011, 65, 1620-1629.	3.0	72
44	Magnetization transfer contrast–suppressed imaging of amide proton transfer and relayed nuclear overhauser enhancement chemical exchange saturation transfer effects in the human brain at 7T. Magnetic Resonance in Medicine, 2016, 75, 88-96.	3.0	72
45	Simultaneous detection and separation of hyperacute intracerebral hemorrhage and cerebral ischemia using amide proton transfer MRI. Magnetic Resonance in Medicine, 2015, 74, 42-50.	3.0	71
46	Quantitative assessment of the effects of water proton concentration and water T ₁ changes on amide proton transfer (<scp>APT</scp>) and nuclear overhauser enhancement (<scp>NOE</scp>) <scp>MRI</scp> : The origin of the <scp>APT</scp> imaging signal in brain tumor. Magnetic Resonance in Medicine, 2017, 77, 855-863.	3.0	67
47	Ultrathin and large-sized vanadium oxide nanosheets mildly prepared at room temperature for high performance fiber-based supercapacitors. Journal of Materials Chemistry A, 2017, 5, 2483-2487.	10.3	66
48	Inhibition of tPA-induced hemorrhagic transformation involves adenosine A2b receptor activation after cerebral ischemia. Neurobiology of Disease, 2017, 108, 173-182.	4.4	65
49	Three-Dimensional Turbo-Spin-Echo Amide Proton Transfer MR Imaging at 3-Tesla and Its Application to High-Grade Human Brain Tumors. Molecular Imaging and Biology, 2013, 15, 114-122.	2.6	64
50	Magnetic Resonance Imaging of Glucose Uptake and Metabolism in Patients with Head and Neck Cancer. Scientific Reports, 2016, 6, 30618.	3.3	62
51	Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques. Magnetic Resonance in Medicine, 2017, 77, 779-786.	3.0	62
52	Highly Concentrated, Ultrathin Nickel Hydroxide Nanosheet Ink for Wearable Energy Storage Devices. Advanced Materials, 2017, 29, 1703455.	21.0	62
53	HIF-1α- Targeting Acriflavine Provides Long Term Survival and Radiological Tumor Response in Brain Cancer Therapy. Scientific Reports, 2017, 7, 14978.	3.3	62
54	Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation. Nanoscale, 2018, 10, 118-123.	5.6	58

#	Article	IF	CITATIONS
55	Selecting the reference image for registration of CEST series. Journal of Magnetic Resonance Imaging, 2016, 43, 756-761.	3.4	56
56	Recent Advances in Design of Flexible Electrodes for Miniaturized Supercapacitors. Small Methods, 2020, 4, 1900824.	8.6	56
57	A modified Weibull model for tensile strength distribution of carbon nanotube fibers with strain rate and size effects. Applied Physics Letters, 2012, 101, .	3.3	52
58	Electrochemical capacitive properties of CNT fibers spun from vertically aligned CNT arrays. Journal of Solid State Electrochemistry, 2012, 16, 1775-1780.	2.5	52
59	Quantifying amide proton exchange rate and concentration in chemical exchange saturation transfer imaging of the human brain. Neurolmage, 2019, 189, 202-213.	4.2	50
60	Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics. European Radiology, 2018, 28, 2115-2123.	4.5	49
61	Suppression of lipid artifacts in amide proton transfer imaging. Magnetic Resonance in Medicine, 2005, 54, 222-225.	3.0	48
62	Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1391-1417.	4.3	48
63	Scalable preparation of high performance fibrous electrodes with bio-inspired compact core-fluffy sheath structure for wearable supercapacitors. Carbon, 2020, 157, 106-112.	10.3	48
64	Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model. Neuro-Oncology, 2014, 16, 856-867.	1.2	45
65	Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma. European Radiology, 2019, 29, 6643-6652.	4.5	45
66	Amide proton transfer imaging for differentiation of benign and atypical meningiomas. European Radiology, 2018, 28, 331-339.	4.5	43
67	InverseT2 contrast at 1.5 Tesla between gray matter and white matter in the occipital lobe of normal adult human brain. Magnetic Resonance in Medicine, 2001, 46, 401-406.	3.0	42
68	Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget, 2017, 8, 5834-5842.	1.8	42
69	Load-transfer efficiency and mechanical reliability of carbon nanotube fibers under low strain rates. International Journal of Plasticity, 2013, 40, 56-64.	8.8	41
70	Chemical exchange saturation transfer MR imaging of articular cartilage glycosaminoglycans at 3T: Accuracy of B0 Field Inhomogeneity corrections with gradient echo method. Magnetic Resonance Imaging, 2014, 32, 41-47.	1.8	40
71	Differentiating the histologic grades of gliomas preoperatively using amide proton transferâ€weighted (APTW) and intravoxel incoherent motion MRI. NMR in Biomedicine, 2018, 31, e3850.	2.8	40
72	FAIR excluding radiation damping (FAIRER). Magnetic Resonance in Medicine, 1998, 40, 712-719.	3.0	38

#	Article	IF	CITATIONS
73	A Simple Model for Understanding the Origin of the Amide Proton Transfer MRI Signal in Tissue. Applied Magnetic Resonance, 2012, 42, 393-402.	1.2	38
74	The incorporation of expanded 1T-enriched MoS2 boosts hybrid fiber improved charge storage capability. Carbon, 2020, 170, 543-549.	10.3	35
75	Using functional and molecular MRI techniques to detect neuroinflammation and neuroprotection after traumatic brain injury. Brain, Behavior, and Immunity, 2017, 64, 344-353.	4.1	34
76	Pulseq EST: Towards multiâ€site multiâ€vendor compatibility and reproducibility of CEST experiments using an openâ€source sequence standard. Magnetic Resonance in Medicine, 2021, 86, 1845-1858.	3.0	33
77	Improved chemical exchange saturation transfer imaging with realâ€time frequency drift correction. Magnetic Resonance in Medicine, 2019, 81, 2915-2923.	3.0	32
78	Amide proton transfer magnetic resonance imaging in detecting intracranial hemorrhage at different stages: a comparative study with susceptibility weighted imaging. Scientific Reports, 2017, 7, 45696.	3.3	30
79	Amide Proton Transfer Imaging of the Human Brain. Methods in Molecular Biology, 2011, 711, 227-237.	0.9	30
80	Chemical exchange saturation transfer (CEST) imaging with fast variably-accelerated sensitivity encoding (vSENSE). Magnetic Resonance in Medicine, 2017, 77, 2225-2238.	3.0	29
81	Amide proton transfer-weighted MRI detection of traumatic brain injury in rats. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3422-3432.	4.3	28
82	Evolution of Cerebral Ischemia Assessed by Amide Proton Transfer-Weighted MRI. Frontiers in Neurology, 2017, 8, 67.	2.4	28
83	Chemical Exchange Saturation Transfer (CEST) MR Technique for Liver Imaging at 3.0 Tesla: an Evaluation of Different Offset Number and an After-Meal and Over-Night-Fast Comparison. Molecular Imaging and Biology, 2016, 18, 274-282.	2.6	27
84	Effect of transit times on quantification of cerebral blood flow by the FAIR T1-difference approach. Magnetic Resonance in Medicine, 1999, 42, 890-894.	3.0	26
85	Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development. European Radiology, 2016, 26, 3368-3376.	4.5	26
86	Chemical Exchange Saturation Transfer MRI Signal Loss of the Substantia Nigra as an Imaging Biomarker to Evaluate the Diagnosis and Severity of Parkinson's Disease. Frontiers in Neuroscience, 2017, 11, 489.	2.8	26
87	Jahn–Teller distortions boost the ultrahigh areal capacity and cycling robustness of holey NiMn-hydroxide nanosheets for flexible energy storage devices. Nanoscale, 2020, 12, 22075-22081.	5.6	26
88	Prospective acceleration of parallel RF transmissionâ€based 3D chemical exchange saturation transfer imaging with compressed sensing. Magnetic Resonance in Medicine, 2019, 82, 1812-1821.	3.0	25
89	Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding. Journal of Magnetic Resonance, 2013, 237, 125-138.	2.1	24
90	Highly accelerated chemical exchange saturation transfer (CEST) measurements with linear algebraic modeling. Magnetic Resonance in Medicine, 2016, 76, 136-144.	3.0	24

#	Article	IF	CITATIONS
91	Solutionâ€Processable Design of Fiberâ€Shaped Wearable Zn//Ni(OH) ₂ Battery. Energy Technology, 2018, 6, 2326-2332.	3.8	24
92	Differentiation of recurrent diffuse glioma from treatment-induced change using amide proton transfer imaging: incremental value to diffusion and perfusion parameters. Neuroradiology, 2021, 63, 363-372.	2.2	24
93	Polarization behaviors of twisted carbon nanotube fibers. Journal of Raman Spectroscopy, 2012, 43, 1221-1226.	2.5	21
94	Chemical Exchange Saturation Transfer MR Imaging is Superior to Diffusion-Tensor Imaging in the Diagnosis and Severity Evaluation of Parkinson's Disease: A Study on Substantia Nigra and Striatum. Frontiers in Aging Neuroscience, 2015, 7, 198.	3.4	21
95	Characterizing amide proton transfer imaging in haemorrhage brain lesions using 3T MRI. European Radiology, 2017, 27, 1577-1584.	4.5	21
96	Probing structure and strain transfer in dry-spun carbon nanotube fibers by depth-profiled Raman spectroscopy. Applied Physics Letters, 2013, 103, .	3.3	20
97	Can amide proton transfer–weighted imaging differentiate tumor grade and predict Ki-67 proliferation status of meningioma?. European Radiology, 2019, 29, 5298-5306.	4.5	20
98	Chemical exchange saturation transfer (CEST) MR technique for in-vivo liver imaging at 3.0 tesla. European Radiology, 2016, 26, 1792-1800.	4.5	19
99	Protein-based amide proton transfer-weighted MR imaging of amnestic mild cognitive impairment. NeuroImage: Clinical, 2020, 25, 102153.	2.7	19
100	Over-and-Under Complete Convolutional RNN for MRI Reconstruction. Lecture Notes in Computer Science, 2021, 12906, 13-23.	1.3	19
101	The interaction between magnetization transfer and blood-oxygen-level-dependent effects. Magnetic Resonance in Medicine, 2005, 53, 356-366.	3.0	17
102	Amide proton transfer-weighted MRI for predicting histological grade of hepatocellular carcinoma: comparison with diffusion-weighted imaging. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1641-1651.	2.0	17
103	Amorphous phase induced high phosphorous-doping in dandelion-like cobalt sulfides for enhanced battery-supercapacitor hybrid device. Journal of Electroanalytical Chemistry, 2021, 889, 115231.	3.8	17
104	Acquisition sequences and reconstruction methods for fast chemical exchange saturation transfer imaging. NMR in Biomedicine, 2023, 36, e4699.	2.8	17
105	Perfusion imaging using FAIR with a short predelay. Magnetic Resonance in Medicine, 1999, 41, 1099-1107.	3.0	16
106	Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T. Magnetic Resonance in Medicine, 2019, 81, 316-330.	3.0	16
107	Amide Proton Transfer Weighted Imaging Shows Differences in Multiple Sclerosis Lesions and White Matter Hyperintensities of Presumed Vascular Origin. Frontiers in Neurology, 2019, 10, 1307.	2.4	16
108	Amide Proton Transfer MRI Signal as a Surrogate Biomarker of Ischemic Stroke Recovery in Patients With Supportive Treatment. Frontiers in Neurology, 2019, 10, 104.	2.4	15

#	Article	IF	CITATIONS
109	Quantitative correlational study of microbubbleâ€enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model. Medical Physics, 2015, 42, 4762-4772.	3.0	14
110	Differentiation of Malignant and Benign Head and Neck Tumors with Amide Proton Transfer-Weighted MR Imaging. Molecular Imaging and Biology, 2019, 21, 348-355.	2.6	14
111	The Jahn-Teller Effect for Amorphization of Molybdenum Trioxide towards High-Performance Fiber Supercapacitor. Research, 2021, 2021, 6742715.	5.7	14
112	Applications of chemical exchange saturation transfer magnetic resonance imaging in identifying genetic markers in gliomas. NMR in Biomedicine, 2023, 36, e4731.	2.8	13
113	Fast 3D chemical exchange saturation transfer imaging with variablyâ€∎ccelerated sensitivity encoding (vSENSE). Magnetic Resonance in Medicine, 2019, 82, 2046-2061.	3.0	12
114	Growth properties of SF188/V+ human glioma in rats in vivo observed by magnetic resonance imaging. Journal of Neuro-Oncology, 2012, 110, 315-323.	2.9	11
115	Amide Proton Transfer Contrast Distribution in Different Brain Regions in Young Healthy Subjects. Frontiers in Neuroscience, 2019, 13, 520.	2.8	11
116	Amide proton transfer-weighted magnetic resonance imaging of human brain aging at 3 Tesla. Quantitative Imaging in Medicine and Surgery, 2020, 10, 727-742.	2.0	11
117	2D material–based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications. Analytical and Bioanalytical Chemistry, 2022, 414, 2971-2989.	3.7	11
118	Assessment of Glioma Response to Radiotherapy Using Multiple MRI Biomarkers with Manual and Semiautomated Segmentation Algorithms. Journal of Neuroimaging, 2016, 26, 626-634.	2.0	10
119	Amide Proton Transfer–Weighted MR Imaging of Pediatric Central Nervous System Diseases. Magnetic Resonance Imaging Clinics of North America, 2021, 29, 631-641.	1.1	10
120	Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET. Molecular Imaging and Biology, 2018, 20, 473-481.	2.6	9
121	Wetâ€Chemistry: A Useful Tool for Deriving Metal–Organic Frameworks toward Supercapacitors and Secondary Batteries. Advanced Materials Interfaces, 2022, 9, .	3.7	9
122	Quantitative Biomedical Imaging: Techniques and Clinical Applications. BioMed Research International, 2016, 2016, 1-2.	1.9	5
123	Minimizing lipid signal bleed in brain ¹ H chemical shift imaging by postâ€acquisition grid shifting. Magnetic Resonance in Medicine, 2015, 74, 320-329.	3.0	4
124	Ultrafast compartmentalized relaxation time mapping with linear algebraic modeling. Magnetic Resonance in Medicine, 2018, 79, 286-297.	3.0	4
125	Amide Proton Transfer-Weighted (APTw) Imaging of Intracranial Infection in Children: Initial Experience and Comparison with Gadolinium-Enhanced T1-Weighted Imaging. BioMed Research International, 2020, 2020, 1-13.	1.9	4
126	Improving Amide Proton Transfer-Weighted MRI Reconstruction Using T2-Weighted Images. Lecture Notes in Computer Science, 2020, 12262, 3-12.	1.3	4

#	Article	IF	CITATIONS
127	Lesion Mask-Based Simultaneous Synthesis of Anatomic and Molecular MR Images Using a GAN. Lecture Notes in Computer Science, 2020, 12262, 104-113.	1.3	4
128	Chemical exchange saturation transfer MRI using intermolecular double-quantum coherences with multiple refocusing pulses. Magnetic Resonance Imaging, 2014, 32, 759-765.	1.8	3
129	Editorial for "Amide Proton Transferâ€Weighted Imaging Could Complement Apparent Diffusion Coefficient for More Lesion Characterization in Transition Zone of the Prostate― Journal of Magnetic Resonance Imaging, 2022, 56, 1320-1321.	3.4	3
130	Fast, Reliable 3D Amide Proton Transfer Imaging of Brain Tumors at 3T with Variably-accelerated Sensitivity Encoding (vSENSE). Proceedings of the International Society for Magnetic Resonance in Medicine Scientific Meeting and Exhibition., 2017, 25, .	0.5	2
131	Fast Chemical Exchange Saturation Transfer (CEST) Imaging with Variably-accelerated Sensitivity Encoding (vSENSE). Proceedings of the International Society for Magnetic Resonance in Medicine Scientific Meeting and Exhibition., 2016, 24, 1522.	0.5	1
132	Highly-accelerated CEST Measurements in Three Dimensions with Linear Algebraic Modeling. Proceedings of the International Society for Magnetic Resonance in Medicine Scientific Meeting and Exhibition., 2016, 24, 1524.	0.5	0
133	Ultrafast compartmental relaxation time mapping with linear algebraic modeling. Proceedings of the International Society for Magnetic Resonance in Medicine Scientific Meeting and Exhibition., 2017, 25, 0071.	0.5	0
134	Amide Proton Transfer-Weighted Magnetic Resonance Imaging for Detecting Severity and Predicting Outcome after Traumatic Brain Injury in Rats. Neurotrauma Reports, 2022, 3, 261-275.	1.4	0