Jin-Han Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5594776/publications.pdf

Version: 2024-02-01

331670 526287 1,616 32 21 27 citations h-index g-index papers 32 32 32 1880 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Durable and Water-Floatable Ionic Polymer Actuator with Hydrophobic and Asymmetrically Laser-Scribed Reduced Graphene Oxide Paper Electrodes. ACS Nano, 2014, 8, 2986-2997.	14.6	199
2	Electro-active graphene–Nafion actuators. Carbon, 2011, 49, 1279-1289.	10.3	187
3	Highâ€Fidelity Bioelectronic Muscular Actuator Based on Grapheneâ€Mediated and TEMPOâ€Oxidized Bacterial Cellulose. Advanced Functional Materials, 2015, 25, 3560-3570.	14.9	107
4	Dryâ€Type Artificial Muscles Based on Pendent Sulfonated Chitosan and Functionalized Graphene Oxide for Greatly Enhanced Ionic Interactions and Mechanical Stiffness. Advanced Functional Materials, 2013, 23, 6007-6018.	14.9	104
5	Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation. Carbon, 2010, 48, 2953-2957.	10.3	101
6	Novel biomimetic actuator based on SPEEK and PVDF. Sensors and Actuators B: Chemical, 2009, 143, 357-364.	7.8	90
7	Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition. Sensors and Actuators B: Chemical, 2010, 146, 307-313.	7.8	88
8	Fabrication and actuation of ionic polymer metal composites patterned by combining electroplating with electroless plating. Composites Part A: Applied Science and Manufacturing, 2008, 39, 588-596.	7.6	82
9	Bioâ€Inspired Allâ€Organic Soft Actuator Based on a π–π Stacked 3D Ionic Network Membrane and Ultraâ€Fast Solution Processing. Advanced Functional Materials, 2014, 24, 6005-6015.	14.9	78
10	Electric-stimuli-responsive bending actuator based on sulfonated polyetherimide. Sensors and Actuators B: Chemical, 2010, 151, 198-204.	7.8	69
11	A soft biomolecule actuator based on a highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups. Soft Matter, 2016, 12, 246-254.	2.7	67
12	Active Disturbance Rejection Control for Precise Position Tracking of Ionic Polymer–Metal Composite Actuators. IEEE/ASME Transactions on Mechatronics, 2013, 18, 86-95.	5.8	63
13	Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT:PSS. Smart Materials and Structures, 2013, 22, 085026.	3.5	61
14	Electroactive bio-composite actuators based on cellulose acetate nanofibers with specially chopped polyaniline nanoparticles through electrospinning. Composites Science and Technology, 2013, 87, 135-141.	7.8	55
15	An eco-friendly ultra-high performance ionic artificial muscle based on poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and carboxylated bacterial cellulose. Journal of Materials Chemistry B, 2016, 4, 5015-5024.	5.8	40
16	Selective growth of platinum electrodes for MDOF IPMC actuators. Thin Solid Films, 2009, 517, 5288-5292.	1.8	38
17	Microwave extraction of graphene from carbon fibers. Carbon, 2011, 49, 222-226.	10.3	33
18	Snap-through dynamics of buckled IPMC actuator. Sensors and Actuators A: Physical, 2010, 158, 300-305.	4.1	29

#	Article	IF	CITATIONS
19	Electro-chemo-mechanical characteristics of fullerene-reinforced ionic polymer–metal composite transducers. Smart Materials and Structures, 2010, 19, 075009.	3.5	24
20	Electroâ€active Polymer Actuator Based on Sulfonated Polyimide with Highly Conductive Silver Electrodes Via Selfâ€metallization. Macromolecular Rapid Communications, 2011, 32, 1583-1587.	3.9	23
21	Low voltage actuator using ionic polymer metal nanocomposites based on a miscible polymer blend. Journal of Materials Chemistry A, 2015, 3, 19718-19727.	10.3	22
22	Wellâ€aligned Nanoâ€fiberous Membranes Based on Threeâ€pole Electrospinning with Channel Electrode. Macromolecular Rapid Communications, 2011, 32, 921-926.	3.9	17
23	Transparent Flexible Polymer Actuator with Enhanced Output Force Enabled by Conductive Nanowires Interlayer. Advanced Materials Technologies, 2020, 5, 1900762.	5.8	15
24	How does clamping pressure influence actuation performance of soft ionic polymer–metal composites?. Smart Materials and Structures, 2013, 22, 025014.	3.5	13
25	Mutiple electrode patterning of ionic polymer metal composite actuators. , 2006, , .		3
26	Dynamic Characteristics of Novel Ionic-Polymer-Metal-Composites. Key Engineering Materials, 2006, 321-323, 208-211.	0.4	3
27	Development of Bio-Mimetic Patterned IPMC Actuators with Multiple Electrodes. Key Engineering Materials, 2007, 334-335, 1005-1008.	0.4	2
28	Nonlinear dynamics of curved IPMC actuators undergoing electrically driven large deformations. International Journal of Smart and Nano Materials, 2012, 3, 214-225.	4.2	2
29	It's a PHAct., 2018, , .		1
30	Snap-through dynamics of bi-stable IPMC actuator considering beam configuration. Proceedings of SPIE, 2009, , .	0.8	0
31	IPMCs as EAPs: Materials. , 2016, , 151-170.		0
32	IPMCs as EAPs: Materials. , 2016, , 1-20.		O