
Michel Charbonneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5594766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of the alternative lengthening of telomeres pathway by subtelomeric sequences in Saccharomyces cerevisiae. DNA Repair, 2020, 96, 102996.	1.3	1
2	The level of activity of the alternative lengthening of telomeres correlates with patient age in IDH-mutant ATRX-loss-of-expression anaplastic astrocytomas. Acta Neuropathologica Communications, 2019, 7, 175.	2.4	8
3	The telomeric Cdc13–Stn1–Ten1 complex regulates RNA polymerase II transcription. Nucleic Acids Research, 2019, 47, 6250-6268.	6.5	8
4	Detection of the alternative lengthening of telomeres pathway in malignant gliomas for improved molecular diagnosis. Journal of Neuro-Oncology, 2017, 135, 381-390.	1.4	21
5	Measurement of Telomere Length in Colorectal Cancers for Improved Molecular Diagnosis. International Journal of Molecular Sciences, 2017, 18, 1871.	1.8	16
6	Genetic Inactivation of <i>ATRX</i> Leads to a Decrease in the Amount of Telomeric Cohesin and Level of Telomere Transcription in Human Glioma Cells. Molecular and Cellular Biology, 2015, 35, 2818-2830.	1.1	41
7	Mec1-Dependent Phosphorylation of the Scc3 Subunit of Cohesin during Mitosis in Budding Yeast. Advances in Bioscience and Biotechnology (Print), 2015, 06, 153-163.	0.3	1
8	RPA provides checkpoint-independent cell cycle arrest and prevents recombination at uncapped telomeres of Saccharomyces cerevisiae. DNA Repair, 2013, 12, 212-226.	1.3	3
9	Genetic and Physical Interactions between Tel2 and the Med15 Mediator Subunit in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e30451.	1.1	4
10	Rvb2/reptin physically associates with telomerase in budding yeast. FEBS Letters, 2011, 585, 3890-3897.	1.3	1
11	Telomerase- and Rad52-Independent Immortalization of Budding Yeast by an Inherited-Long-Telomere Pathway of Telomeric Repeat Amplification. Molecular and Cellular Biology, 2009, 29, 965-985.	1.1	25
12	Protection against chromosome degradation at the telomeres. Biochimie, 2008, 90, 41-59.	1.3	38
13	Budding yeast 14-3-3 proteins contribute to the robustness of the DNA damage and spindle checkpoints. Cell Cycle, 2008, 7, 2749-2761.	1.3	9
14	Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA. Nucleic Acids Research, 2007, 35, 822-838.	6.5	27
15	Mrc1, a non-essential DNA replication protein, is required for telomere end protection following loss of capping by Cdc13, Yku or telomerase. Molecular Genetics and Genomics, 2007, 277, 685-699.	1.0	22
16	Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion. Biology of the Cell, 2005, 97, 799-814.	0.7	32
17	Mitotic Cyclins Regulate Telomeric Recombination in Telomerase-Deficient Yeast Cells. Molecular and Cellular Biology, 2003, 23, 9162-9177.	1.1	27
18	The Rad51 Pathway of Telomerase-Independent Maintenance of Telomeres Can Amplify TG1-3 Sequences in yku and cdc13 Mutants of Saccharomyces cerevisiae. Molecular and Cellular Biology, 2003, 23, 3721-3734.	1.1	43

MICHEL CHARBONNEAU

#	Article	IF	CITATIONS
19	Mac1, a fission yeast transmembrane protein localizing to the poles and septum, is required for correct cell separation at high temperatures. Biology of the Cell, 2002, 94, 127-137.	0.7	1
20	Cdc13 Cooperates with the Yeast Ku Proteins and Stn1 To Regulate Telomerase Recruitment. Molecular and Cellular Biology, 2000, 20, 8397-8408.	1.1	100
21	A hypothesis on p34cdc2 sequestration based on the existence of Ca2+-coordinated changes in H+ and MPF activities during pus egg activation. Biology of the Cell, 1992, 75, 165-172.	0.7	5
22	Changes in intracellular free calcium activity in Xenopus eggs following imposed intracellular pH changes using weak acids and weak bases. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1091, 242-250.	1.9	8
23	Changes in intracellular pH following egg activation and during the early cell cycle of the amphibian Pleurodeles waltlii, coincide with changes in MPF activity. Biology of the Cell, 1991, 72, 259-267.	0.7	9
24	Patterns of protein synthesis during Xenopus oocyte maturation differ according to the type of stimulation. Cell Differentiation and Development, 1990, 31, 197-206.	0.4	2
25	The organization of the cortical endoplasmic reticulum in Xenopus eggs depends on intracellular pH: artefact of fixation or not?. Cell Differentiation and Development, 1990, 30, 171-179.	0.4	5
26	The egg of Xenopus laevis: A model system for studying cell activation. Cell Differentiation and Development, 1989, 28, 71-93.	0.4	13
27	Weak bases mimic the fertilization-associated chloride conductance increase and induce morphological changes in the cortex of Xenopus laevis eggs. Cell Differentiation and Development, 1989, 26, 39-51.	0.4	8
28	A requirement for protein phosphorylation in regulating the meiotic and mitotic cell cycles in echinoderms. Developmental Biology, 1989, 132, 304-314.	0.9	49
29	Intracellular pH and the increase in protein synthesis accompanying activation of Xenopus eggs. Biology of the Cell, 1989, 67, 321-330.	0.7	22
30	Weak bases inhibit cleavage and embryogenesis in amphibians and echinoderms. Cell Differentiation, 1987, 20, 33-44.	1.3	17
31	Inhibition of the activation reaction of Xenopus laevis eggs by the lectins WGA and SBA. Developmental Biology, 1986, 114, 347-360.	0.9	14
32	Multiple activation currents can be evoked inXenopus laevis eggs when cortical granule exocytosis is inhibited by weak bases. Pflugers Archiv European Journal of Physiology, 1986, 407, 370-376.	1.3	4
33	A Freeze-Fracture Study of the Cortex of Xenopus laevis Eggs. (amphibian egg/cortical endoplasmic) Tj ETQq1 1 Differentiation, 1986, 28, 75-84.	0.784314 0.6	rgBT /Over 10
34	Polysaccharide Complexes in Full-Grown Oocytes of the Newt, Pleurodeles, and Changes in their Distribution During Progesterone-Induced Maturation. (glycogen granules/oocyte) Tj ETQq0 0 0 rgBT /Overlock 1 1985, 27, 763-775.	10 Tf 50 1	42 Td (matu
35	External Na+ inhibits Ca2+-ionophore activation of Xenopus eggs. Developmental Biology, 1985, 108, 369-376.	0.9	15
36	The onset of activation responsiveness during maturation coincides with the formation of the	0.9	120

The onset of activation responsiveness during maturation coincides with the formation of the cortical endoplasmic reticulum in oocytes of Xenopus laevis. Developmental Biology, 1984, 102, 90-97. 36

3

#	Article	IF	CITATIONS
37	Anuran fertilization: a morphological reinvestigation of some early events. Journal of Ultrastructure Research, 1982, 81, 306-321.	1.4	37