Randall Hay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5594520/publications.pdf

Version: 2024-02-01

394421 377865 1,262 35 19 34 citations h-index g-index papers 35 35 35 457 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SiC/SiC mini-composites with yttrium disilicate fiber coatings: Oxidation in steam. Journal of the European Ceramic Society, 2021, 41, 3132-3140.	5.7	13
2	Subcritical crack growth models for static fatigue of Hiâ€Nicalon TM â€S SiC fiber in air and steam. Journal of the American Ceramic Society, 2021, 104, 3562-3592.	3.8	7
3	IR transmission prediction, processing, and characterization of dense La ₂ Ce ₂ O ₇ . Journal of the American Ceramic Society, 2021, 104, 5659-5670.	3.8	8
4	Static fatigue of Hiâ€Nicalonâ,,¢â€S fiber at elevated temperature in air, steam, and silicic acidâ€saturated steam. Journal of the American Ceramic Society, 2020, 103, 1358-1371.	3.8	10
5	In situ Y ₂ Si ₂ O ₇ coatings on SiC fibers: Thermodynamic analysis and processing. Journal of the American Ceramic Society, 2019, 102, 167-177.	3.8	8
6	Model for SiC fiber strength after oxidation in dry and wet air. Journal of the American Ceramic Society, 2019, 102, 397-415.	3.8	29
7	Crystallization kinetics for SiO ₂ formed during SiC fiber oxidation in steam. Journal of the American Ceramic Society, 2019, 102, 5587-5602.	3.8	19
8	In situ Y ₂ Si ₂ O ₇ coatings on Hiâ€Nicalonâ€6 SiC fibers: Phase formation and fiber strength. Journal of the American Ceramic Society, 2019, 102, 5725-5737.	3.8	10
9	SiC fiber strength after low <scp>pO</scp> ₂ oxidation. Journal of the American Ceramic Society, 2018, 101, 831-844.	3.8	19
10	Evaluation of SiC/SiC minicomposites with yttrium disilicate fiber coating. Journal of the American Ceramic Society, 2018, 101, 91-102.	3.8	20
11	Passive oxidation kinetics for glass and cristobalite formation on Hiâ€Nicalonâ"¢â€S SiC fibers in steam. Journal of the American Ceramic Society, 2018, 101, 5241-5256.	3.8	20
12	Degradation of Nextelâ,,¢ 610â€based oxideâ€oxide ceramic composites by aluminum oxychloride decomposition products. Journal of the American Ceramic Society, 2018, 101, 4203-4223.	3.8	10
13	Oxidation kinetics strength of <scp>Hiâ€NicalonTMâ€S</scp> SiC fiber after oxidation in dry and wet air. Journal of the American Ceramic Society, 2017, 100, 4110-4130.	3.8	50
14	Processing and Testing of RE ₂ Si ₂ O ₇ Fiber–Matrix Interphases for SiC–SiC Composites. Journal of the American Ceramic Society, 2016, 99, 415-423.	3.8	23
15	Modeling Environmental Degradation of SiCâ€Based Fibers. Journal of the American Ceramic Society, 2016, 99, 1725-1734.	3.8	28
16	Fiber Strength After Grain Growth in Nextel ^{â,,¢} 610 Alumina Fiber. Journal of the American Ceramic Society, 2015, 98, 1907-1914.	3.8	38
17	Determination of 3â€D Alumina Grain Orientation, Size, Shape, and GrowthÂKinetics from 2â€D Data in Nextel ^{â,,¢} 610 Fibers. Journal of the American Ceramic Society, 2015, 98, 2295-2306.	3.8	10

Total Thermal Expansion Coefficients of the Yttrium Silicate Apatite Phase <scp>Y</scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></s

#	Article	IF	CITATIONS
19	Creep of Nextel ^{â,¢} 610 Fiber at 1100°C in Air and in Steam. International Journal of Applied Ceramic Technology, 2013, 10, 276-284.	2.1	32
20	Rare-Earth Disilicates As Oxidation-Resistant Fiber Coatings for Silicon Carbide Ceramic-Matrix Composites. Journal of the American Ceramic Society, 2011, 94, 1716-1724.	3.8	38
21	Precipitation Coating of Monazite on Woven Ceramic Fibers: Ill—Coating without Strength Degradation Using a Phytic Acid Precursor. Journal of the American Ceramic Society, 2010, 93, 420-428.	3.8	13
22	Precipitation Coating of Monazite on Woven Ceramic Fibers: II. Effect of Processing Conditions on Coating Morphology and Strength Retention of Nextelâ,,¢610 and 720 Fibers. Journal of the American Ceramic Society, 2008, 91, 1508-1516.	3.8	26
23	Precipitation Coating of Rareâ€Earth Orthophosphates on Woven Ceramic Fibers—Effect of Rareâ€Earth Cation on Coating Morphology and Coated Fiber Strength. Journal of the American Ceramic Society, 2008, 91, 2117-2123.	3.8	13
24	Precipitation Coating of Monazite on Woven Ceramic Fibers: I. Feasibility. Journal of the American Ceramic Society, 2007, 90, 448-455.	3.8	37
25	Zirconia–Silica–Carbon Coatings on Ceramic Fibers. Journal of the American Ceramic Society, 2004, 87, 1967-1976.	3.8	18
26	Influence of Interfacial Roughness on Fiber Sliding in Oxide Composites with Laâ€Monazite Interphases. Journal of the American Ceramic Society, 2003, 86, 305-316.	3.8	50
27	Characterization and Highâ€Temperature Mechanical Behavior of an Oxide/Oxide Composite. Journal of the American Ceramic Society, 2003, 86, 981-990.	3.8	115
28	Interface Design for Oxidationâ€Resistant Ceramic Composites. Journal of the American Ceramic Society, 2002, 85, 2599-2632.	3.8	261
29	Monazite Coatings on Fibers: I, Effect of Temperature and Alumina Doping on Coatedâ€Fiber Tensile Strength. Journal of the American Ceramic Society, 2001, 84, 2783-2792.	3.8	47
30	Monazite Coatings on Fibers: II, Coating without Strength Degradation. Journal of the American Ceramic Society, 2001, 84, 2793-2801.	3.8	59
31	Evaluation of Porous ZrO ₂ â€SiO ₂ and Monazite Coatings Using Nextel TM 720â€Fiberâ€Reinforced Blackglasâ"¢ Minicomposites. Journal of the American Ceramic Society, 2001, 84, 1526-1532.	3.8	32
32	Continuous Coating of Oxide Fiber Tows Using Liquid Precursors: Monazite Coatings on Nextel 720â,,¢. Journal of the American Ceramic Society, 1999, 82, 2321-2331.	3.8	76
33	TEM specimen preparation and characterization of ceramic coatings on fiber tows. Thin Solid Films, 1997, 308-309, 389-392.	1.8	42
34	Preparation of Thin Sections of Coated Fibers for Characterization by Transmission Electron Microscopy. Journal of the American Ceramic Society, 1996, 79, 2481-2484.	3.8	53
35	Fiber Strength with Coatings from Sols and Solutions. , 0, , 43-52.		10