Cengiz Kahraman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/559397/cengiz-kahraman-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 14,474 112 403 h-index g-index citations papers 16,776 460 3.2 7.53 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
403	Extension of VIKOR Method Using Circular Intuitionistic Fuzzy Sets. <i>Lecture Notes in Networks and Systems</i> , 2022 , 48-57	0.5	2
402	Spherical Fuzzy CRITIC Method: Prioritizing Supplier Selection Criteria. <i>Lecture Notes in Networks and Systems</i> , 2022 , 705-714	0.5	2
401	Social Acceptability Assessment of Renewable Energy Policies: An Integrated Approach Based on IVPF BOCR and IVIF AHP. <i>Lecture Notes in Networks and Systems</i> , 2022 , 93-100	0.5	1
400	Prioritization of Factors Affecting the Digitalization of Quality Management Using Interval-Valued Intuitionistic Fuzzy Best-Worst Method. <i>Lecture Notes in Networks and Systems</i> , 2022 , 28-39	0.5	2
399	Spherical Fuzzy EXPROM Method: Wastewater Treatment Technology Selection Application. Lecture Notes in Networks and Systems, 2022, 789-801	0.5	
398	Spherical Fuzzy REGIME Method Waste Disposal Location Selection. <i>Lecture Notes in Networks and Systems</i> , 2022 , 715-723	0.5	2
397	Customer-oriented product design using an integrated neutrosophic AHP & DEMATEL & QFD methodology. <i>Applied Soft Computing Journal</i> , 2022 , 118, 108445	7.5	6
396	New Product Design Using Chebyshev Inequality Based Interval-Valued Intuitionistic Z-Fuzzy QFD Method. <i>Informatica</i> , 2022 , 1-33	2.9	2
395	Novel spherical fuzzy distance and similarity measures and their applications to medical diagnosis. <i>Expert Systems With Applications</i> , 2022 , 191, 116330	7.8	3
394	Intelligent Systems in Aviation 4.0 Industry. Studies in Systems, Decision and Control, 2022, 21-38	0.8	
393	Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP. <i>Energy</i> , 2022 , 239, 121907	7.9	20
392	Interval-Valued and Circular Intuitionistic Fuzzy Present Worth Analyses. <i>Informatica</i> , 2022 , 1-19	2.9	1
391	Operational risk analysis in business processes using decomposed fuzzy sets. <i>Journal of Intelligent and Fuzzy Systems</i> , 2022 , 1-18	1.6	1
390	Minimum spanning tree hierarchical clustering algorithm: A new Pythagorean fuzzy similarity measure for the analysis of functional brain networks. <i>Expert Systems With Applications</i> , 2022 , 117016	7.8	3
389	A new ELECTRE-based method for group decision-making with complex spherical fuzzy information. <i>Knowledge-Based Systems</i> , 2022 , 243, 108525	7.3	4
388	An intuitionistic fuzzy multi-distance based evaluation for aggregated dynamic decision analysis (IF-DEVADA): Its application to waste disposal location selection. <i>Engineering Applications of Artificial Intelligence</i> , 2022 , 111, 104809	7.2	5
387	A novel picture fuzzy CRITIC & amp; REGIME methodology: Wearable health technology application. Engineering Applications of Artificial Intelligence, 2022, 113, 104942	7.2	2

(2021-2022)

386	Strategic Multi-criteria Decision-Making Against Pandemics Using Picture and Spherical Fuzzy AHP and TOPSIS. <i>Profiles in Operations Research</i> , 2022 , 385-422	1	1
385	IoT Platform Selection Using Interval Valued Intuitionistic Fuzzy TOPSIS. <i>Lecture Notes in Networks and Systems</i> , 2022 , 656-664	0.5	
384	IoT Platform Selection Using Interval Valued Intuitionistic Fuzzy TOPSIS. <i>Lecture Notes in Networks and Systems</i> , 2022 , 693-701	0.5	
383	Risk Assessment of[WtE Plants by[Using a[Modified Fuzzy SCEA Approach. <i>Lecture Notes in Networks and Systems</i> , 2022 , 225-232	0.5	
382	Fuzzy Analytic Hierarchy Process Using Spherical Z-Numbers: Supplier Selection Application. <i>Lecture Notes in Networks and Systems</i> , 2022 , 702-713	0.5	
381	Electric Vehicle Selection by Using Fuzzy SMART. Lecture Notes in Networks and Systems, 2022, 200-207	0.5	O
380	Classification of Non-pharmaceutical Anti-COVID Interventions Based on Novel FTOPSIS-Sort Models. <i>Lecture Notes in Networks and Systems</i> , 2022 , 64-72	0.5	
379	Cloud Service Provider Selection Using Interval-Valued Picture Fuzzy TOPSIS. <i>Lecture Notes in Networks and Systems</i> , 2022 , 498-507	0.5	
378	Intuitionistic Fuzzy Z-numbers. Advances in Intelligent Systems and Computing, 2021, 1316-1324	0.4	3
377	Extensions of Fuzzy Sets in Big Data Applications: A Literature Review. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 884-893	0.4	O
376	A Case Study on Vehicle Battery Manufacturing Using Fuzzy Analysis of Variance. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 916-923	0.4	2
375	An Integrated Fuzzy DEMATEL and Fuzzy Cognitive Mapping Methodology for Prioritizing Smart Campus Investments. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 701-708	0.4	
374	Technology Selection of Indoor Location Systems Using Interval Valued Type-2 Intuitionistic Fuzzy WASPAS. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 494-502	0.4	
373	Modeling Humanoid Robots Mimics Using Intuitionistic Fuzzy Sets. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 339-346	0.4	
372	Fuzzy Metaheuristics: A State-of-the-Art Review. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 1447-1455	0.4	
371	Defects Control Charts Using Interval-Valued Penthagorean Fuzzy Sets. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 1396-1406	0.4	
370	Properties and Arithmetic Operations of Spherical Fuzzy Sets. <i>Studies in Fuzziness and Soft Computing</i> , 2021 , 3-25	0.7	4
369	Hospital Performance Assessment Using Interval-Valued Spherical Fuzzy Analytic Hierarchy Process. <i>Studies in Fuzziness and Soft Computing</i> , 2021 , 349-373	0.7	7

368	Delivery Drone Design Using Spherical Fuzzy Quality Function Deployment. <i>Studies in Fuzziness and Soft Computing</i> , 2021 , 399-430	0.7	3
367	Analysis of Usability Test Parameters Affecting the Mobile Application Designs by Using Spherical Fuzzy Sets. <i>Studies in Fuzziness and Soft Computing</i> , 2021 , 431-452	0.7	3
366	Spherical Fuzzy Bonferroni Mean Aggregation Operators and Their Applications to Multiple-Attribute Decision Making. <i>Studies in Fuzziness and Soft Computing</i> , 2021 , 111-134	0.7	8
365	Optimal Site Selection of Electric Vehicle Charging Station by Using Spherical Fuzzy TOPSIS Method. <i>Studies in Fuzziness and Soft Computing</i> , 2021 , 201-216	0.7	12
364	Evaluating Strategic Entry Decisions Using Spherical Fuzzy Sets. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 127-133	0.4	1
363	Spherical Fuzzy Cost/Benefit Analysis of Wind Energy Investments. <i>Advances in Intelligent Systems</i> and Computing, 2021 , 134-141	0.4	3
362	A Fuzzy Pricing Model for Mobile Advertisements by Using Spherical Fuzzy AHP Scoring. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 142-150	0.4	2
361	Extensions of Ordinary Fuzzy Sets: A Comparative Literature Review. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 1655-1665	0.4	2
360	Group decision-making based on complex spherical fuzzy VIKOR approach. <i>Knowledge-Based Systems</i> , 2021 , 216, 106793	7.3	57
359	A spherical fuzzy methodology integrating maximizing deviation and TOPSIS methods. <i>Engineering Applications of Artificial Intelligence</i> , 2021 , 101, 104212	7.2	18
358	Estimating shopping center visitor numbers based on a new hybrid fuzzy prediction method. Journal of Intelligent and Fuzzy Systems, 2021, 1-14	1.6	2
357	ERP selection using picture fuzzy CODAS method. <i>Journal of Intelligent and Fuzzy Systems</i> , 2021 , 40, 1	13 6 36-11	1373
356	Extension of TOPSIS model to the decision-making under complex spherical fuzzy information. <i>Soft Computing</i> , 2021 , 25, 10771-10795	3.5	17
355	Circular intuitionistic fuzzy topsis method: pandemic hospital location selection. <i>Journal of Intelligent and Fuzzy Systems</i> , 2021 , 1-22	1.6	2
354	Waste disposal location selection by using pythagorean fuzzy REGIME method. <i>Journal of Intelligent and Fuzzy Systems</i> , 2021 , 1-10	1.6	5
353	Risk assessment of R&D projects: a new approach based on IVIF AHP and fuzzy axiomatic design. Journal of Intelligent and Fuzzy Systems, 2021, 1-10	1.6	1
352	A Novel spherical fuzzy CRITIC method and its application to prioritization of supplier selection criteria. <i>Journal of Intelligent and Fuzzy Systems</i> , 2021 , 1-8	1.6	3
351	Intuitionistic fuzzy multi-objective milk-run modelling under time window constraints. <i>Journal of</i> Intelligent and Fuzzy Systems, 2021 , 1-16	1.6	1

(2020-2021)

350	A new hesitant fuzzy KEMIRA approach: An application to adoption of autonomous vehicles. Journal of Intelligent and Fuzzy Systems, 2021 , 1-12	1.6	1	
349	Socio-economic evaluation model for sustainable solar PV panels using a novel integrated MCDM methodology: A case in Turkey. <i>Socio-Economic Planning Sciences</i> , 2021 , 77, 100998	3.7	10	
348	Fuzzy Sets and Extensions: A Literature Review. Studies in Systems, Decision and Control, 2021, 27-95	0.8	1	
347	A Novel Spherical Fuzzy Bi-Objective Linear Assignment Method and Its Application to Insurance Options Selection. <i>International Journal of Information Technology and Decision Making</i> , 2021 , 20, 521-5	5 ^{2.8}	5	
346	Process design and capability analysis using penthagorean fuzzy sets: surgical mask production machines comparison. <i>Journal of Intelligent and Fuzzy Systems</i> , 2021 , 1-13	1.6	0	
345	Hesitant Pythagorean fuzzy ELECTRE-II method for multi-criteria decision-making problems. <i>Applied Soft Computing Journal</i> , 2021 , 108, 107479	7.5	24	
344	Evaluation of government strategies against COVID-19 pandemic using q-rung orthopair fuzzy TOPSIS method. <i>Applied Soft Computing Journal</i> , 2021 , 110, 107653	7.5	21	
343	Metaheuristics in Modeling Humanoid Robots: A Literature Review. <i>Studies in Systems, Decision and Control</i> , 2021 , 135-147	0.8		
342	Modeling Humanoid Robots Using Fuzzy Set Extensions. <i>Studies in Systems, Decision and Control</i> , 2021 , 99-119	0.8	О	
341	Interval-valued Pythagorean Fuzzy EDAS method: An Application to Car Selection Problem. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 38, 4061-4077	1.6	17	
340	Evaluation of legal debt collection services by using Hesitant Pythagorean (Intuitionistic Type 2) fuzzy AHP. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 38, 883-894	1.6	8	
339	Selection of the Most Appropriate Renewable Energy Alternatives by Using a Novel Interval-Valued Neutrosophic ELECTRE I Method. <i>Informatica</i> , 2020 , 225-248	2.9	7	
338	Spherical Fuzzy Linear Assignment Method for Multiple Criteria Group Decision-Making Problems. <i>Informatica</i> , 2020 , 707-722	2.9	13	
337	Advanced Fuzzy Sets and Multicriteria Decision Making on Product Development. <i>Studies in Systems, Decision and Control</i> , 2020 , 283-302	0.8	1	
336	Warehouse Location Design Using AS/RS Technologies: An Interval Valued Intuitionistic Fuzzy AHP Approach. <i>Studies in Systems, Decision and Control</i> , 2020 , 379-397	0.8	1	
335	A Literature Review on Fuzzy FMEA and an Application on Infant Car Seat Design Using Spherical Fuzzy Sets. <i>Studies in Systems, Decision and Control</i> , 2020 , 429-449	0.8	2	
334	A Comprehensive Literature Review on Nature-Inspired Soft Computing and Algorithms 2020 , 1851-18	85		
333	Sustainable energy selection based on interval-valued intuitionistic fuzzy and neutrosophic aggregation operators. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 39, 6553-6563	1.6	2	

332	Weighting Performance Indicators of Debt Collection Offices by Using Hesitant Fuzzy AHP. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 1017-1024	0.4		
331	Location Selection by Intuitionistic Fuzzy and Neutrosophic Aggregation Operators. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 527-536	0.4	1	
330	Website Design Using Pythagorean Fuzzy Axiomatic Design. <i>Studies in Systems, Decision and Control</i> , 2020 , 169-183	0.8	1	
329	Score and accuracy functions for different types of spherical fuzzy sets 2020 ,		2	
328	Customer Oriented Product Design and Intelligence. Studies in Systems, Decision and Control, 2020, 3-20	0 0.8		
327	Pythagorean Fuzzy AHP Method for the Selection of the Most Appropriate Clean Energy Technology. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 879-887	0.4	3	
326	Innovative Teaching Feedback System Design Using Hesitant Fuzzy AHP Approach. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 1006-1013	0.4	1	
325	Failure Mode and Effect Analysis Using Interval Valued Neutrosophic Sets. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 1085-1093	0.4	4	
324	Malcolm Baldrige National Quality Award Assessment Using Interval Valued Pythagorean Fuzzy Sets. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 1097-1103	0.4	0	
323	Performance Measurement of Debt Collection Firms Using Spherical Fuzzy Aggregation Operators. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 506-514	0.4	4	
322	Single & interval-valued neutrosophic AHP methods: Performance analysis of outsourcing law firms. Journal of Intelligent and Fuzzy Systems, 2020 , 38, 749-759	1.6	16	
321	A novel spherical fuzzy QFD method and its application to the linear delta robot technology development. <i>Engineering Applications of Artificial Intelligence</i> , 2020 , 87, 103348	7.2	43	
320	Fuzzy production systems: A state of the art literature review. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 38, 1071-1081	1.6		
319	A general approach to fuzzy TOPSIS based on the concept of fuzzy multicriteria acceptability analysis. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 38, 979-995	1.6	15	
318	Development of harmonic aggregation operator with trapezoidal Pythagorean fuzzy numbers. <i>Soft Computing</i> , 2020 , 24, 11791-11803	3.5	6	
317	CODAS method using Z-fuzzy numbers. Journal of Intelligent and Fuzzy Systems, 2020, 38, 1649-1662	1.6	11	
316	Fuzzy extensions of PROMETHEE: Models of different complexity with different ranking methods and their comparison. <i>Fuzzy Sets and Systems</i> , 2020 , 422, 1-1	3.7	5	
315	A novel single-valued spherical fuzzy AHP-WASPAS methodology 2020 ,		4	

(2020-2020)

314	Novel similarity measures in spherical fuzzy environment and their applications. <i>Engineering Applications of Artificial Intelligence</i> , 2020 , 94, 103837	7.2	21
313	Call center performance measurement using intuitionistic fuzzy sets. <i>Journal of Enterprise Information Management</i> , 2020 , 33, 1647-1668	4.4	3
312	Fuzzy controlled humanoid robots: A literature review. <i>Robotics and Autonomous Systems</i> , 2020 , 134, 103643	3.5	12
311	Evaluating social sustainable development factors using multi-experts Z-fuzzy AHP. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 39, 6181-6192	1.6	1
310	Multi-criteria spherical fuzzy regret based evaluation of healthcare equipment stocks. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 39, 5987-5997	1.6	6
309	Modeling humanoid robots facial expressions using Pythagorean fuzzy sets. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 39, 6507-6515	1.6	1
308	Prioritization of renewable energy sources using multi-experts Pythagorean fuzzy WASPAS. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 39, 6407-6417	1.6	7
307	A dynamic pricing model for location based systems by using spherical fuzzy AHP scoring. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 39, 6293-6302	1.6	9
306	Interval-valued neutrosophic failure mode and effect analysis. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 39, 6591-6601	1.6	1
305	Social open innovation platform design for science teaching by using pythagorean fuzzy analytic hierarchy process. <i>Journal of Intelligent and Fuzzy Systems</i> , 2020 , 38, 809-819	1.6	3
304	A corridor selection for locating autonomous vehicles using an interval-valued intuitionistic fuzzy AHP and TOPSIS method. <i>Soft Computing</i> , 2020 , 24, 8937-8953	3.5	30
303	An Intuitionistic Fuzzy Axiomatic Design Approach for the Evaluation of Solid Waste Disposal Methods. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 537-545	0.4	1
302	AS/RS Technology Selection Using Interval-Valued Pythagorean Fuzzy WASPAS. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 867-875	0.4	2
301	Assessment of Renewable Energy Alternatives with Pythagorean Fuzzy WASPAS Method: A Case Study of Turkey. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 888-895	0.4	4
300	Customer Segmentation Method Determination Using Neutrosophic Sets. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 517-526	0.4	2
299	An Integrated Interval-Valued Neutrosophic AHP and TOPSIS Methodology for Sustainable Cities Challenges. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 653-661	0.4	O
298	A novel spherical fuzzy analytic hierarchy process and its renewable energy application. <i>Soft Computing</i> , 2020 , 24, 4607-4621	3.5	136
297	Decision making for energy investments by using neutrosophic present worth analysis with interval-valued parameters. <i>Engineering Applications of Artificial Intelligence</i> , 2020 , 92, 103639	7.2	5

296	A novel neutrosophic CODAS method: Selection among wind energy plant locations. <i>Journal of Intelligent and Fuzzy Systems</i> , 2019 , 36, 1491-1504	1.6	18
295	A novel VIKOR method using spherical fuzzy sets and its application to warehouse site selection. Journal of Intelligent and Fuzzy Systems, 2019 , 37, 1197-1211	1.6	79
294	Water treatment technology selection using hesitant Pythagorean fuzzy hierachical decision making. <i>Journal of Intelligent and Fuzzy Systems</i> , 2019 , 37, 867-884	1.6	7
293	A state-of-the-art review on multi-attribute renewable energy decision making. <i>Energy Strategy Reviews</i> , 2019 , 25, 18-33	9.8	81
292	An integrated methodology using neutrosophic CODAS & fuzzy inference system: Assessment of livability index of urban districts. <i>Journal of Intelligent and Fuzzy Systems</i> , 2019 , 36, 5443-5455	1.6	7
291	A novel interval-valued Pythagorean fuzzy QFD method and its application to solar photovoltaic technology development. <i>Computers and Industrial Engineering</i> , 2019 , 132, 361-372	6.4	54
2 90	A fuzzy multi attribute decision framework with integration of QFD and grey relational analysis. <i>Expert Systems With Applications</i> , 2019 , 115, 474-485	7.8	80
289	A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets. <i>Engineering Applications of Artificial Intelligence</i> , 2019 , 85, 307-323	7.2	108
288	Z-fuzzy hypothesis testing in statistical decision making. <i>Journal of Intelligent and Fuzzy Systems</i> , 2019 , 37, 6545-6555	1.6	8
287	Extension of WASPAS with Spherical Fuzzy Sets. <i>Informatica</i> , 2019 , 30, 269-292	2.9	73
286	Residential Construction Site Selection Through Interval-Valued Hesitant Fuzzy CODAS Method. <i>Informatica</i> , 2019 , 30, 689-710	2.9	6
285	An Integrated AHP & DEA Methodology with Neutrosophic Sets. <i>Studies in Fuzziness and Soft Computing</i> , 2019 , 623-645	0.7	5
284	A novel pythagorean fuzzy AHP and its application to landfill site selection problem. <i>Soft Computing</i> , 2019 , 23, 10953-10968	3.5	70
283	Interval-Valued Neutrosophic EDAS Method: An Application to Prioritization of Social Responsibility Projects. <i>Studies in Fuzziness and Soft Computing</i> , 2019 , 455-485	0.7	4
282	A new weighted fuzzy information axiom method in production research. <i>Journal of Enterprise Information Management</i> , 2019 , 32, 170-190	4.4	3
281	Analytic Network Process with Neutrosophic Sets. Studies in Fuzziness and Soft Computing, 2019 , 525-54	2 .7	1
280	Spherical fuzzy sets and spherical fuzzy TOPSIS method. <i>Journal of Intelligent and Fuzzy Systems</i> , 2019 , 36, 337-352	1.6	287
279	A novel intuitionistic fuzzy DEMATEL IANP ITOPSIS integrated methodology for freight village location selection. <i>Journal of Intelligent and Fuzzy Systems</i> , 2019 , 36, 1335-1352	1.6	35

278	Interval-Valued Intuitionistic Fuzzy Confidence Intervals. <i>Journal of Intelligent Systems</i> , 2019 , 28, 307-3	19 .5	4
277	Evaluation of firms applying to Malcolm Baldrige National Quality Award: a modified fuzzy AHP method. <i>Complex & Intelligent Systems</i> , 2019 , 5, 53-63	7.1	9
276	A novel interval-valued neutrosophic EDAS method: prioritization of the United Nations national sustainable development goals. <i>Soft Computing</i> , 2018 , 22, 4891-4906	3.5	54
275	An Integrated Intuitionistic Fuzzy AHP and TOPSIS Approach to Evaluation of Outsource Manufacturers. <i>Journal of Intelligent Systems</i> , 2018 , 29, 283-297	1.5	25
274	Fuzzy Forecasting Methods for Energy Planning. Studies in Systems, Decision and Control, 2018, 65-81	0.8	1
273	Fuzzy Sets Applications in Complex Energy Systems: A Literature Review. <i>Studies in Systems, Decision and Control</i> , 2018 , 15-37	0.8	1
272	Fuzzy Collective Intelligence for Performance Measurement in Energy Systems. <i>Studies in Systems, Decision and Control</i> , 2018 , 497-517	0.8	1
271	Operational Planning in Energy Systems: A Literature Review. <i>Studies in Systems, Decision and Control</i> , 2018 , 335-356	0.8	
270	Wind Energy Investment Analyses Based on Fuzzy Sets. <i>Studies in Systems, Decision and Control</i> , 2018 , 141-166	0.8	4
269	A novel interval-valued neutrosophic AHP with cosine similarity measure. <i>Soft Computing</i> , 2018 , 22, 494	413 <u>.4</u> 95	874
268	A novel trapezoidal intuitionistic fuzzy information axiom approach: An application to multicriteria landfill site selection. <i>Engineering Applications of Artificial Intelligence</i> , 2018 , 67, 157-172	7.2	55
267	Prioritization of Business Analytics Projects Using Interval Type-2 Fuzzy AHP. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 106-117	0.4	3
266	Interval-Valued Neutrosophic Extension of EDAS Method. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 343-357	0.4	10
265	Six Sigma Project Selection Using Interval Neutrosophic TOPSIS. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 83-93	0.4	2
264	Multicriteria Scoring Methods Using Pythagorean Fuzzy Sets. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 328-335	0.4	5
263	Present Worth Analysis Using Pythagorean Fuzzy Sets. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 336-342	0.4	9
262	Fuzzy approaches in production research and information management. <i>Journal of Enterprise Information Management</i> , 2018 , 31, 490-491	4.4	1
261	A special issue on extensions of fuzzy sets in decision-making. <i>Soft Computing</i> , 2018 , 22, 4851-4853	3.5	3

260	Natural gas technology selection using Pythagorean fuzzy CODAS 2018 ,		2
259	Prioritization of the requirements for collaborative feedback platform for course contents using Pythagorean fuzzy sets 2018 ,		2
258	AN INTIUTIONISTIC FUZZY MULTI-EXPERT AND MULTI-CRITERIA SYSTEM FOR EFFECTIVE PERFORMANCE MANAGEMENT. <i>Technological and Economic Development of Economy</i> , 2018 , 24, 2179-2	267	
257	MULTIATTRIBUTE EVALUATION OF ORGANIC AND INORGANIC AGRICULTURAL FOOD INVESTMENTS USING FUZZY TOPSIS. <i>Technological and Economic Development of Economy</i> , 2018 , 24, 844-858	4.7	13
256	AN INTEGRATED FUZZY AHP/DEA APPROACH FOR PERFORMANCE EVALUATION OF TERRITORIAL UNITS IN TURKEY. <i>Technological and Economic Development of Economy</i> , 2018 , 24, 1280-1302	4.7	16
255	A FUZZY RULE BASED INFERENCE SYSTEM FOR EARLY DEBT COLLECTION. <i>Technological and Economic Development of Economy</i> , 2018 , 24, 1845-1865	4.7	3
254	AN INTIUTIONISTIC FUZZY MULTI-EXPERT AND MULTI-CRITERIA SYSTEM FOR EFFECTIVE PERFORMANCE MANAGEMENT. <i>Technological and Economic Development of Economy</i> , 2018 , 24, 2179-2	267	7
253	A Literature Survey on the Usage of Fuzzy MCDM Methods for Digital Marketing 2018 , 54-72		1
252	Intuitionistic Fuzzy Real-Options Theory and its Application to Solar Energy Investment Projects. <i>Engineering Economics</i> , 2018 , 29,	2.3	2
251	Evaluation Of Investment Alternatives Using Present Worth Analysis With Simplified Neutrosophic Sets. <i>Engineering Economics</i> , 2018 , 29,	2.3	7
250	Fuzzy Sets Based Performance Evaluation of Alternative Wind Energy Systems. <i>Studies in Systems, Decision and Control,</i> 2018 , 427-446	0.8	1
249	Neutrosophic AHP and prioritization of legal service outsourcing firms/law offices 2018,		2
248	Integrated Call Center Performance Measurement Using Hierarchical Intuitionistic Fuzzy Axiomatic Design. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 94-105	0.4	2
247	Hesitant Fuzzy Evaluation of System Requirements in Job Matching Platform Design. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 48-55	0.4	
246	Dynamic Intuitionistic Fuzzy Evaluation of Entrepreneurial Support in Countries. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 38-47	0.4	
245	A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. <i>Safety Science</i> , 2018 , 103, 124-136	5.8	263
244	A Comprehensive Survey on Healthcare Management. <i>Profiles in Operations Research</i> , 2018 , 23-51	1	2
243	B2C Marketplace Prioritization Using Hesitant Fuzzy Linguistic AHP. <i>International Journal of Fuzzy Systems</i> , 2018 , 20, 2202-2215	3.6	26

242	A novel hesitant fuzzy EDAS method and its application to hospital selection. <i>Journal of Intelligent and Fuzzy Systems</i> , 2018 , 35, 6353-6365	1.6	29	
241	Retail store performance measurement using a novel interval-valued Pythagorean fuzzy WASPAS method. <i>Journal of Intelligent and Fuzzy Systems</i> , 2018 , 35, 3835-3846	1.6	26	
240	Interval-valued intuitionistic fuzzy CODAS method and its application to wave energy facility location selection problem. <i>Journal of Intelligent and Fuzzy Systems</i> , 2018 , 35, 4865-4877	1.6	38	
239	A new risk assessment approach: Safety and Critical Effect Analysis (SCEA) and its extension with Pythagorean fuzzy sets. <i>Safety Science</i> , 2018 , 108, 173-187	5.8	84	
238	FUZZY MULTIATTRIBUTE CONSUMER CHOICE AMONG HEALTH INSURANCE OPTIONS. Technological and Economic Development of Economy, 2017 , 22, 1-20	4.7	11	
237	Evaluation of research proposals for grant funding using interval-valued intuitionistic fuzzy sets. <i>Soft Computing</i> , 2017 , 21, 1203-1218	3.5	35	
236	Process capability analysis using Intuitionistic fuzzy sets. <i>Journal of Intelligent and Fuzzy Systems</i> , 2017 , 32, 1659-1671	1.6	12	
235	Markdown optimization for an apparel retailer under cross-price and initial inventory effects. Knowledge-Based Systems, 2017 , 120, 186-197	7.3	6	
234	Selecting firms in University technoparks: A hesitant linguistic fuzzy TOPSIS model for heterogeneous contexts. <i>Journal of Intelligent and Fuzzy Systems</i> , 2017 , 33, 1155-1172	1.6	28	
233	Multi-criteria alternative-fuel technology selection using interval-valued intuitionistic fuzzy sets. <i>Transportation Research, Part D: Transport and Environment</i> , 2017 , 53, 128-148	6.4	54	
232	Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. <i>Knowledge-Based Systems</i> , 2017 , 133, 90-106	7.3	98	
231	INTUITIONISTIC FUZZY EDAS METHOD: AN APPLICATION TO SOLID WASTE DISPOSAL SITE SELECTION. <i>Journal of Environmental Engineering and Landscape Management</i> , 2017 , 25, 1-12	1.1	151	
230	Extension of information axiom from ordinary to intuitionistic fuzzy sets: An application to search algorithm selection. <i>Computers and Industrial Engineering</i> , 2017 , 105, 348-361	6.4	28	
229	Special issue on H uzzy systems and intelligent decision making[] <i>Complex & Intelligent Systems</i> , 2017 , 3, 153-154	7.1	1	
228	Dynamic intuitionistic fuzzy multi-attribute aftersales performance evaluation. <i>Complex & Intelligent Systems</i> , 2017 , 3, 197-204	7.1	9	
227	Fuzzy Economic Analysis Methods for Environmental Economics. <i>Intelligent Systems Reference Library</i> , 2017 , 315-346	0.8	6	
226	Economic Analysis of Municipal Solid Waste Collection Systems Using Type-2 Fuzzy Net Present Worth Analysis. <i>Intelligent Systems Reference Library</i> , 2017 , 347-364	0.8	2	
225	Process Capability Analysis Using Interval Type-2 Fuzzy Sets. <i>International Journal of Computational Intelligence Systems</i> , 2017 , 10, 721	3.4	5	

224	Evaluation of Renewable Energy Alternatives Using Hesitant Fuzzy TOPSIS and Interval Type-2 Fuzzy AHP 2017 , 1378-1412		4
223	A Comprehensive Literature Review on Nature-Inspired Soft Computing and Algorithms. <i>Advances in Computational Intelligence and Robotics Book Series</i> , 2017 , 34-68	0.4	1
222	Analysis of Brand Image Effect on Advertising Awareness Using A Neuro-Fuzzy and A Neural Network Prediction Models. <i>International Journal of Computational Intelligence Systems</i> , 2017 , 10, 690	3.4	3
221	MULTICRITERIA ANALYSIS OF TECHNOLOGICAL INNOVATION INVESTMENTS USING FUZZY SETS. Technological and Economic Development of Economy, 2016 , 22, 235-253	4.7	7
220	A Fuzzy Multiphase and Multicriteria Decision-Making Method for Cutting Technologies Used in Shipyards. <i>International Journal of Fuzzy Systems</i> , 2016 , 18, 198-211	3.6	4
219	Fuzzy Shewhart Control Charts. Studies in Fuzziness and Soft Computing, 2016, 263-280	0.7	1
218	Fuzzy Central Tendency Measures. Studies in Fuzziness and Soft Computing, 2016, 65-83	0.7	
217	Fuzzy Statistical Decision-Making. Studies in Fuzziness and Soft Computing, 2016, 1-12	0.7	
216	Fuzzy Extensions of Confidence Intervals: Estimation for $\bar{\mu}$, $\bar{\nu}$, and p. Studies in Fuzziness and Soft Computing, 2016 , 129-154	0.7	1
215	Intuitionistic Fuzzy Multicriteria Evaluation of Outsource Manufacturers. <i>IFAC-PapersOnLine</i> , 2016 , 49, 1844-1849	0.7	7
214	FUZZY COPRAS METHOD FOR PERFORMANCE MEASUREMENT IN TOTAL PRODUCTIVE MAINTENANCE: A COMPARATIVE ANALYSIS. <i>Journal of Business Economics and Management</i> , 2016 , 17, 663-684	2	63
213	Fuzzy Sets in the Evaluation of Socio-Ecological Systems: An Interval-Valued Intuitionistic Fuzzy Multi-criteria Approach. <i>Studies in Fuzziness and Soft Computing</i> , 2016 , 309-326	0.7	4
212	Fuzzy Sets in Earth and Space Sciences. Studies in Fuzziness and Soft Computing, 2016, 161-174	0.7	1
211	A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Towards high quality progress. <i>Information Fusion</i> , 2016 , 29, 89-97	16.7	177
210	ELECTRE I Method Using Hesitant Linguistic Term Sets: An Application to Supplier Selection. <i>International Journal of Computational Intelligence Systems</i> , 2016 , 9, 153-167	3.4	37
209	A Literature Survey on Metaheuristics in Production Systems. <i>Operations Research/ Computer Science Interfaces Series</i> , 2016 , 1-24	0.3	4
208	Intelligent Decision Making Techniques in Quality Management: A Literature Review. <i>Intelligent Systems Reference Library</i> , 2016 , 1-22	0.8	1
207	Intelligent Process Control Using Control ChartsII: Control Charts for Attributes. <i>Intelligent Systems Reference Library</i> , 2016 , 71-100	0.8	

206	AFTERSALES SERVICE PERFORMANCE MEASUREMENT USING DYNAMIC INTUITIONISTIC FUZZY MULTI-ATTRIBUTE DECISION MAKING 2016 ,		2
205	MULTIATTRIBUTE WAREHOUSE LOCATION SELECTION IN HUMANITARIAN LOGISTICS USING HESITANT FUZZY AHP. <i>International Journal of the Analytic Hierarchy Process</i> , 2016 , 8,	1.2	9
204	A Literature Survey on the Usage of Fuzzy MCDM Methods for Digital Marketing. <i>Advances in Marketing, Customer Relationship Management, and E-services Book Series</i> , 2016 , 1-19	0.3	4
203	A Fuzzy Design of Single and Double Acceptance Sampling Plans. <i>Intelligent Systems Reference Library</i> , 2016 , 179-211	0.8	6
202	Intelligent Process Control Using Control Charts Control Charts for Variables. <i>Intelligent Systems Reference Library</i> , 2016 , 23-70	0.8	
201	A Comparison of Wind Energy Investment Alternatives Using Interval-Valued Intuitionistic Fuzzy Benefit/Cost Analysis. <i>Sustainability</i> , 2016 , 8, 118	3.6	37
200	Fuzzy multicriteria prioritization of Urban transformation projects for Istanbul. <i>Journal of Intelligent and Fuzzy Systems</i> , 2016 , 30, 2459-2474	1.6	16
199	Fuzzy Decision Making: Its Pioneers and Supportive Environment. <i>Studies in Fuzziness and Soft Computing</i> , 2016 , 21-58	0.7	2
198	A Comprehensive Literature Review of 50 Years of Fuzzy Set Theory. <i>International Journal of Computational Intelligence Systems</i> , 2016 , 9, 3-24	3.4	51
197	A new hesitant fuzzy QFD approach: An application to computer workstation selection. <i>Applied Soft Computing Journal</i> , 2016 , 46, 1-16	7.5	108
196	MULTICRITERIA DECISION MAKING FOR CONSTRUCTION PROJECTS USING INTERVAL-VALUED INTUITIONISTIC AHP 2016 ,		1
195	Interval Valued Intuitionistic Fuzzy Investment Analysis: Application to CNC Lathe Selection. <i>IFAC-PapersOnLine</i> , 2016 , 49, 1323-1328	0.7	4
194	Fuzzy Dispersion Measures. Studies in Fuzziness and Soft Computing, 2016, 85-99	0.7	
193	Interval Type-2 Fuzzy Capital Budgeting. International Journal of Fuzzy Systems, 2015, 17, 635-646	3.6	26
192	Preface to a Special Issue on Intelligent Systems and Decision-Making for Risk Analysis and Crisis Response. <i>Human and Ecological Risk Assessment (HERA)</i> , 2015 , 21, 1147-1151	4.9	
191	Fuzzy Multicriteria Decision-Making: A Literature Review. <i>International Journal of Computational Intelligence Systems</i> , 2015 , 8, 637-666	3.4	282
190	Engineering Management and Intelligent Systems. Intelligent Systems Reference Library, 2015, 3-18	0.8	
189	Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets. <i>Energy</i> , 2015 , 90, 274-285	7.9	113

188	Multi-criteria evaluation of alternative-fuel vehicles via a hierarchical hesitant fuzzy linguistic model. <i>Expert Systems With Applications</i> , 2015 , 42, 2835-2848	7.8	123
187	Minimizing Environmental Risks Using Fuzzy TOPSIS: Location Selection for the ITU Faculty of Management. <i>Human and Ecological Risk Assessment (HERA)</i> , 2015 , 21, 1326-1340	4.9	12
186	VIKOR method using interval type two fuzzyßets. <i>Journal of Intelligent and Fuzzy Systems</i> , 2015 , 29, 411	-481	13
185	Engineering economic analyses using intuitionistic and hesitant fuzzy sets. <i>Journal of Intelligent and Fuzzy Systems</i> , 2015 , 29, 1151-1168	1.6	30
184	Annual cash flow analysis using hesitant fuzzy sets 2015 ,		2
183	A TWO PHASED FUZZY METHODOLOGY FOR SELECTION AMONG MUNICIPAL PROJECTS. <i>Technological and Economic Development of Economy</i> , 2015 , 21, 405-422	4.7	9
182	Hesitant fuzzy analytic hierarchy process 2015,		36
181	Human resources management using interval valued intuitionistic fuzzy analytic hierarchy process 2015 ,		8
180	Evaluation of Renewable Energy Alternatives using Hesitant Fuzzy TOPSIS and Interval Type-2 Fuzzy AHP. <i>Advances in Environmental Engineering and Green Technologies Book Series</i> , 2015 , 191-224	0.4	1
179	A COMPARISON OF FUZZY MULTICRITERIA DECISION MAKING METHODS FOR INTELLIGENT BUILDING ASSESSMENT. <i>Journal of Civil Engineering and Management</i> , 2014 , 20, 59-69	3	50
178	Multi Criteria Supplier Selection Using Fuzzy PROMETHEE Method. <i>Studies in Fuzziness and Soft Computing</i> , 2014 , 21-34	0.7	28
177	Fuzzy exponentially weighted moving average control chart for univariate data with a real case application. <i>Applied Soft Computing Journal</i> , 2014 , 22, 1-10	7.5	43
176	Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. <i>Knowledge-Based Systems</i> , 2014 , 59, 48-	· 5 7.3	240
175	A MULTICRITERIA SUPPLIER SELECTION MODEL USING HESITANT FUZZY LINGUISTIC TERM SETS 2014 ,		9
174	PRIORITIZATION OF URBAN TRANSFORMATION PROJECTS IN ISTANBUL USING MULTIATTRIBUTE HESITANT FUZZY LINGUISTIC TERM SETS 2014 ,		1
173	Strategic Decision Selection Using Hesitant fuzzy TOPSIS and Interval Type-2 Fuzzy AHP: A case study. <i>International Journal of Computational Intelligence Systems</i> , 2014 , 7, 1002-1021	3.4	118
172	Resource-constrained project scheduling problem with multiple execution modes and fuzzy/crisp activity durations. <i>Journal of Intelligent and Fuzzy Systems</i> , 2014 , 26, 2001-2020	1.6	6
171	Design evaluation model for display designs of automobiles. <i>Journal of Intelligent and Fuzzy Systems</i> , 2014 , 26, 961-973	1.6	2

(2013-2014)

170	Vehicle selection for public transportation using an integrated multi criteria decision making approach: A case of Ankara. <i>Journal of Intelligent and Fuzzy Systems</i> , 2014 , 26, 2467-2481	1.6	22	
169	Type-2 fuzzy process capability indices for non-normal processes. <i>Journal of Intelligent and Fuzzy Systems</i> , 2014 , 27, 769-781	1.6	15	
168	FUZZY MULTICRITERIA EVALUATION OF HEALTH RESEARCH INVESTMENTS. <i>Technological and Economic Development of Economy</i> , 2014 , 20, 210-226	4.7	17	
167	Facility Location Selection in Reverse Logistics Using a Type-2 Fuzzy Decision Aid Method. <i>Studies in Fuzziness and Soft Computing</i> , 2014 , 591-606	0.7	9	
166	Supply Chain Performance Measurement: An Integrated DEMATEL and Fuzzy-ANP Approach. <i>Studies in Fuzziness and Soft Computing</i> , 2014 , 143-165	0.7	10	
165	Quantification of Corporate Performance Using Fuzzy Analytic Network Process. <i>Advances in Computational Intelligence and Robotics Book Series</i> , 2014 , 385-413	0.4		
164	Markdown Optimization via Approximate Dynamic Programming. <i>International Journal of Computational Intelligence Systems</i> , 2013 , 6, 64-78	3.4	7	
163	Analysis of cross-price effects on markdown policies by using function approximation techniques. <i>Knowledge-Based Systems</i> , 2013 , 53, 173-184	7.3	4	
162	Fuzzy Analytic Hierarchy Process Using Type-2 Fuzzy Sets: An Application to Warehouse Location Selection 2013 , 285-308		16	
161	EVALUATION OF RENEWABLE ENERGY ALTERNATIVES USING MACBETH AND FUZZY AHP MULTICRITERIA METHODS: THE CASE OF TURKEY. <i>Technological and Economic Development of Economy</i> , 2013 , 19, 38-62	4.7	91	
160	Healthcare Failure Mode and Effects Analysis Under Fuzziness. <i>Human and Ecological Risk Assessment (HERA)</i> , 2013 , 19, 538-552	4.9	39	
159	A fuzzy multi-criteria approach to point-factor method for job evaluation. <i>Journal of Intelligent and Fuzzy Systems</i> , 2013 , 25, 659-671	1.6	7	
158	Fuzzy Inference Systems for Disaster Response. Atlantis Computational Intelligence Systems, 2013, 75-94	1	16	
157	A FUZZY MULTI-CRITERIA DECISION ANALYSIS APPROACH FOR RETAIL LOCATION SELECTION. International Journal of Information Technology and Decision Making, 2013, 12, 729-755	2.8	20	
156	FUZZY MULTI-CRITERIA AND MULTI-EXPERTS EVALUATION OF GOVERNMENT INVESTMENTS IN HIGHER EDUCATION: THE CASE OF TURKEY. <i>Technological and Economic Development of Economy</i> , 2013 , 19, 549-569	4.7	16	
155	Developing a Smart Clothing System for Blinds Based on Information Axiom. <i>International Journal of Computational Intelligence Systems</i> , 2013 , 6, 279-292	3.4	7	
154	Usage of Metaheuristics in Engineering 2013 , 484-528		24	
153	Professor Da Ruan⊞ Academic Activities with His Turkish Friends 2013 , 157-162			

152	Assessment of Green Energy Alternatives Using Fuzzy ANP. <i>Green Energy and Technology</i> , 2013 , 55-77	0.6	12
151	Application of fuzzy multi-criteria decision making methods for financial performance evaluation of Turkish manufacturing industries. <i>Expert Systems With Applications</i> , 2012 , 39, 350-364	7.8	135
150	Organizational strategy development in distribution channel management using fuzzy AHP and hierarchical fuzzy TOPSIS. <i>Expert Systems With Applications</i> , 2012 , 39, 2822-2841	7.8	100
149	FUZZY ACCEPTANCE SAMPLING AND CHARACTERISTIC CURVES. International Journal of Computational Intelligence Systems, 2012 , 5, 13-29	3.4	30
148	A new fuzzy multicriteria decision making approach: An application for European Quality Award assessment. <i>Knowledge-Based Systems</i> , 2012 , 32, 37-46	7.3	31
147	Fuzzy resource-constrained project scheduling using taboo search algorithm. <i>International Journal of Intelligent Systems</i> , 2012 , 27, 873-907	8.4	13
146	A FUZZY MULTIPLE ATTRIBUTE UTILITY MODEL FOR INTELLIGENT BUILDING ASSESSMENT. <i>Journal of Civil Engineering and Management</i> , 2012 , 18, 811-820	3	15
145	A TWO-PHASED FUZZY MULTICRITERIA SELECTION AMONG PUBLIC TRANSPORTATION INVESTMENTS FOR POLICY-MAKING AND RISK GOVERNANCE. <i>International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems</i> , 2012 , 20, 31-48	0.8	31
144	RISK GOVERNANCE OF URBAN RAIL SYSTEMS USING FUZZY AHP: THE CASE OF ISTANBUL. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2012 , 20, 67-79	0.8	17
143	Aircraft Maintenance Planning Using Fuzzy Critical Path Analysis. <i>International Journal of Computational Intelligence Systems</i> , 2012 , 5, 553-567	3.4	8
142	FUZZY ANALYTIC HIERARCHY PROCESS WITH TYPE-2 FUZZY SETS. World Scientific Proceedings Series on Computer Engingeering and Information Science, 2012 , 201-206		11
141	Oil Consumption Forecasting in Turkey using Artificial Neural Network. <i>International Journal of Energy Optimization and Engineering</i> , 2012 , 1, 89-105	0.9	4
140	Computational Intelligent Systems in IndustrialEngineering. <i>Atlantis Computational Intelligence Systems</i> , 2012 , 1-22		
139	A Fuzzy Inference System for Supply Chain Risk Management. <i>Advances in Intelligent and Soft Computing</i> , 2011 , 429-438		10
138	Fuzzy process capability indices with asymmetric tolerances. <i>Expert Systems With Applications</i> , 2011 , 38, 14882-14890	7.8	13
137	Process capability analyses based on fuzzy measurements and fuzzy control charts. <i>Expert Systems With Applications</i> , 2011 , 38, 3172-3184	7.8	64
136	An integrated fuzzy AHPELECTRE methodology for environmental impact assessment. <i>Expert Systems With Applications</i> , 2011 , 38, 8553-8562	7.8	138
135	Intelligence decision systems in enterprise information management. <i>Journal of Enterprise Information Management</i> , 2011 , 24, 360-379	4.4	32

(2010-2011)

134	A FUZZY APPROACH TO E-BANKING WEBSITE QUALITY ASSESSMENT BASED ON AN INTEGRATED AHP-ELECTRE METHOD / E-BANKININKYSTB TINKLAPIIKOKYBB VERTINIMAS PAREMTAS INTEGRUOTU NEAPIBREIIIIIAIBIIAHP-ELECTRE METODU. Technological and Economic	4.7	49
133	Development of Economy, 2011 , 17, 313-334 Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Systems With Applications, 2011 , 38, 6577-6585	7.8	313
132	Fuzzy multiple criteria forestry decision making based on an integrated VIKOR and AHP approach. <i>Expert Systems With Applications</i> , 2011 , 38, 7326-7333	7.8	111
131	Performance comparison based on customer relationship management using analytic network process. <i>Expert Systems With Applications</i> , 2011 , 38, 9788-9798	7.8	47
130	Process capability analyses with fuzzy parameters. Expert Systems With Applications, 2011, 38, 11918-11	197287	30
129	Evaluating the Packing Process in Food Industry Using Fuzzy and [Stilde] Control Charts. <i>International Journal of Computational Intelligence Systems</i> , 2011 , 4, 509-520	3.4	8
128	Investment decision making under fuzziness. <i>Journal of Enterprise Information Management</i> , 2011 , 24, 126-129	4.4	5
127	A New Tool for Risk Assessment of Air Pollution: Fuzzy Process Capability Indices. <i>Human and Ecological Risk Assessment (HERA)</i> , 2011 , 17, 613-630	4.9	10
126	A Fuzzy Multi-Criteria SWOT Analysis: An Application to Nuclear Power Plant Site Selection. <i>International Journal of Computational Intelligence Systems</i> , 2011 , 4, 583-595	3.4	26
125	A Fuzzy Multi-Criteria SWOT Analysis: An Application to Nuclear Power Plant Site Selection. <i>International Journal of Computational Intelligence Systems</i> , 2011 , 4, 583	3.4	4
124	Evaluation of Green and Renewable Energy System Alternatives Using a Multiple Attribute Utility Model: The Case of Turkey. <i>Studies in Fuzziness and Soft Computing</i> , 2011 , 157-182	0.7	7
123	A multiattribute ABC classification model using fuzzy AHP 2010 ,		4
122	A process capability index with asymmetric tolerances under fuzzy environment 2010,		1
121	An Integrated Fuzzy Multi-Criteria Decision-Making Approach for Six Sigma Project. <i>International Journal of Computational Intelligence Systems</i> , 2010 , 3, 610-621	3.4	17
120	Renewable Energy System Selection Based On Computing with Words. <i>International Journal of Computational Intelligence Systems</i> , 2010 , 3, 461-473	3.4	18
119	A MULTI-PERIOD NEWSVENDOR PROBLEM WITH PRE-SEASON EXTENSION UNDER FUZZY DEMAND. <i>Journal of Business Economics and Management</i> , 2010 , 11, 613-629	2	5
118	Multiattribute Supplier Selection Using Fuzzy Analytic Hierarchy Process. <i>International Journal of Computational Intelligence Systems</i> , 2010 , 3, 553-565	3.4	16
117	Selection among ERP outsourcing alternatives using a fuzzy multi-criteria decision making methodology. <i>International Journal of Production Research</i> , 2010 , 48, 547-566	7.8	68

116	Determining Design Characteristics of Automobile Seats Based On Fuzzy Axiomatic Design Principles. <i>International Journal of Computational Intelligence Systems</i> , 2010 , 3, 43-55	3.4	6
115	Fuzzy Location Selection Techniques. Studies in Fuzziness and Soft Computing, 2010, 329-358	0.7	5
114	Fuzzy and Grey Forecasting Techniques and Their Applications in Production Systems. <i>Studies in Fuzziness and Soft Computing</i> , 2010 , 1-24	0.7	6
113	INVESTMENT ANALYSES USING FUZZY PROBABILITY CONCEPT / INVESTICIJ[ANALIZITAIKANT TIKIMYBIN[NEAPIBRIII][AIBI[KONCEPCIJ[] Technological and Economic Development of Economy, 2010 , 16, 43-57	4.7	24
112	Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. <i>Energy</i> , 2010 , 35, 2517-2527	7.9	451
111	Extension of axiomatic design principles under fuzzy environment. <i>Expert Systems With Applications</i> , 2010 , 37, 2682-2689	7.8	39
110	An integrated fuzzy multi-criteria decision making methodology for material handling equipment selection problem and an application. <i>Expert Systems With Applications</i> , 2010 , 37, 2853-2863	7.8	115
109	Multi-criteria warehouse location selection using Choquet integral. <i>Expert Systems With Applications</i> , 2010 , 37, 3943-3952	7.8	140
108	A new perspective on fuzzy process capability indices: Robustness. <i>Expert Systems With Applications</i> , 2010 , 37, 4593-4600	7.8	21
107	Indicator design for passenger car using fuzzy axiomatic design principles. <i>Expert Systems With Applications</i> , 2010 , 37, 6470-6481	7.8	20
106	Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach. <i>Applied Soft Computing Journal</i> , 2010 , 10, 1293-1300	7.5	74
105	Developing a group decision support system based on fuzzy information axiom. <i>Knowledge-Based Systems</i> , 2010 , 23, 3-16	7.3	76
104	Modeling a flexible manufacturing cell using stochastic Petri nets with fuzzy parameters. <i>Expert Systems With Applications</i> , 2010 , 37, 3910-3920	7.8	55
103	A fuzzy multicriteria methodology for selection among energy alternatives. <i>Expert Systems With Applications</i> , 2010 , 37, 6270-6281	7.8	227
102	Applications of axiomatic design principles: A literature review. <i>Expert Systems With Applications</i> , 2010 , 37, 6705-6717	7.8	132
101	Fuzzy multicriteria disposal method and site selection for municipal solid waste. <i>Waste Management</i> , 2010 , 30, 1729-36	8.6	192
100	Fuzzy process capability analyses with fuzzy normal distribution. <i>Expert Systems With Applications</i> , 2010 , 37, 5390-5403	7.8	26
99	Development of fuzzy process accuracy index for decision making problems. <i>Information Sciences</i> , 2010 , 180, 861-872	7.7	41

(2009-2010)

Structuring ship design project approval mechanism towards installation of operator system interfaces via fuzzy axiomatic design principles. <i>Information Sciences</i> , 2010 , 180, 886-895	7.7	14
Computational Intelligence: Past, Today, and Future. <i>Atlantis Computational Intelligence Systems</i> , 2010 , 1-46		6
Realizing Policies by Projects Using Fuzzy Multiple Criteria Decision Making. <i>Atlantis Computational Intelligence Systems</i> , 2010 , 273-300		4
Determining Design Characteristics of Automobile Seats Based On Fuzzy Axiomatic Design Principles. <i>International Journal of Computational Intelligence Systems</i> , 2010 , 3, 43	3.4	2
Supplier Selection in Agile Manufacturing Using Fuzzy Analytic Hierarchy Process 2010 , 155-190		2
Fuzzy Productivity Measurement in Production Systems. <i>Studies in Fuzziness and Soft Computing</i> , 2010 , 417-430	0.7	3
Fuzzy Statistical Process Control Techniques in Production Systems. <i>Studies in Fuzziness and Soft Computing</i> , 2010 , 431-456	0.7	3
Fuzzy Acceptance Sampling Plans. Studies in Fuzziness and Soft Computing, 2010, 457-481	0.7	9
Fuzzy Investment Planning and Analyses in Production Systems. <i>Studies in Fuzziness and Soft Computing</i> , 2010 , 279-298	0.7	1
Fuzzy Process Capability Analysis and Applications. Studies in Fuzziness and Soft Computing, 2010, 483-	51 3 .7	1
Special Issue of Human and Ecological Risk Assessment (HERA) on Risk Analysis and Crisis Response. <i>Human and Ecological Risk Assessment (HERA)</i> , 2009 , 15, 651-654	4.9	1
Fuzzy Process Accuracy Index to Evaluate Risk Assessment of Drought Effects in Turkey. <i>Human and Ecological Risk Assessment (HERA)</i> , 2009 , 15, 789-810	4.9	32
An Alternative Ranking Approach and Its Usage in Multi-Criteria Decision-Making. <i>International Journal of Computational Intelligence Systems</i> , 2009 , 2, 219-235	3.4	37
Fuzzy process capability indices for quality control of irrigation water. <i>Stochastic Environmental Research and Risk Assessment</i> , 2009 , 23, 451-462	3.5	35
Fuzzy robust process capability indices for risk assessment of air pollution. <i>Stochastic Environmental Research and Risk Assessment</i> , 2009 , 23, 529-541	3.5	47
Information systems outsourcing decisions using a group decision-making approach. <i>Engineering Applications of Artificial Intelligence</i> , 2009 , 22, 832-841	7.2	103
Application of axiomatic design and TOPSIS methodologies under fuzzy environment for proposing competitive strategies on Turkish container ports in maritime transportation network. <i>Expert Systems With Applications</i> , 2009 , 36, 4541-4557	7.8	77
A new multi-attribute decision making method: Hierarchical fuzzy axiomatic design. <i>Expert Systems With Applications</i> , 2009 , 36, 4848-4861	7.8	131
	interfaces via fuzzy axiomatic design principles. Information Sciences, 2010, 180, 886-895 Computational Intelligence: Past, Today, and Future. Atlantis Computational Intelligence Systems, 2010, 1-46 Realizing Policies by Projects Using Fuzzy Multiple Criteria Decision Making. Atlantis Computational Intelligence Systems, 2010, 273-300 Determining Design Characteristics of Automobile Seats Based On Fuzzy Axiomatic Design Principles. International Journal of Computational Intelligence Systems, 2010, 3, 43 Supplier Selection in Agile Manufacturing Using Fuzzy Analytic Hierarchy Process 2010, 155-190 Fuzzy Productivity Measurement in Production Systems. Studies in Fuzziness and Soft Computing, 2010, 417-430 Fuzzy Statistical Process Control Techniques in Production Systems. Studies in Fuzziness and Soft Computing, 2010, 431-456 Fuzzy Acceptance Sampling Plans. Studies in Fuzziness and Soft Computing, 2010, 457-481 Fuzzy Investment Planning and Analyses in Production Systems. Studies in Fuzziness and Soft Computing, 2010, 279-298 Fuzzy Process Capability Analysis and Applications. Studies in Fuzziness and Soft Computing, 2010, 279-298 Fuzzy Process Capability Analysis and Applications. Studies in Fuzziness and Soft Computing, 2010, 483-290, 2010, 279-298 Fuzzy Process Accuracy Index to Evaluate Risk Assessment (HERA), 2009, 15, 651-654 Fuzzy Process Accuracy Index to Evaluate Risk Assessment of Drought Effects in Turkey. Human and Ecological Risk Assessment (HERA), 2009, 15, 789-810 An Alternative Ranking Approach and Its Usage in Multi-Criteria Decision-Making. International Journal of Computational Intelligence Systems, 2009, 2, 219-235 Fuzzy process capability indices for quality control of irrigation water. Stochastic Environmental Research and Risk Assessment, 2009, 23, 451-462 Fuzzy robust process capability indices for risk assessment of air pollution. Stochastic Environmental Research and Risk Assessment, 2009, 23, 451-462 Fuzzy robust process capability indices for risk assessment of air pol	Interfaces via fuzzy axiomatic design principles. Information Sciences, 2010, 180, 886-895 Computational Intelligence: Past, Today, and Future. Atlantis Computational Intelligence Systems, 2010, 1-46 Realizing Policies by Projects Using Fuzzy Multiple Criteria Decision Making. Atlantis Computational Intelligence Systems, 2010, 273-300 Determining Design Characteristics of Automobile Seats Based On Fuzzy Axiomatic Design Principles. International Journal of Computational Intelligence Systems, 2010, 3, 43 Supplier Selection in Agile Manufacturing Using Fuzzy Analytic Hierarchy Process 2010, 155-190 Fuzzy Productivity Measurement in Production Systems. Studies in Fuzziness and Soft Computing, 2010, 417-430 Fuzzy Statistical Process Control Techniques in Production Systems. Studies in Fuzziness and Soft Computing, 2010, 431-456 Fuzzy Acceptance Sampling Plans. Studies in Fuzziness and Soft Computing, 2010, 457-481 o-7 Fuzzy Investment Planning and Analyses in Production Systems. Studies in Fuzziness and Soft Computing, 2010, 279-298 Fuzzy Process Capability Analysis and Applications. Studies in Fuzziness and Soft Computing, 2010, 483-5137 Special Issue of Human and Ecological Risk Assessment (HERA), 2009, 15, 651-654 4-9 Fuzzy Process Accuracy Index to Evaluate Risk Assessment of Drought Effects in Turkey. Human and Ecological Risk Assessment (HERA), 2009, 15, 651-654 An Alternative Ranking Approach and Its Usage in Multi-Criteria Decision-Making. International Journal of Computational Intelligence Systems, 2009, 2, 219-235 Fuzzy process capability Indices for quality control of irrigation water. Stochastic Environmental Research and Risk Assessment, 2009, 23, 451-462 Application of axiomatic design and TOPSIS methodologies under fuzzy environment for proposing Applications of Artificial Intelligence, 2009, 22, 832-841 Application of axiomatic design and TOPSIS methodologies under fuzzy environment for proposing competitive strategies on Turkish container ports in maritime transportation network. E

80	An integrated fuzzy QFD model proposal on routing of shipping investment decisions in crude oil tanker market. <i>Expert Systems With Applications</i> , 2009 , 36, 6227-6235	7.8	85
79	Fuzzy performance evaluation in Turkish Banking Sector using Analytic Hierarchy Process and TOPSIS. <i>Expert Systems With Applications</i> , 2009 , 36, 11699-11709	7.8	223
78	Fuzzy axiomatic design-based performance evaluation model for docking facilities in shipbuilding industry: The case of Turkish shipyards. <i>Expert Systems With Applications</i> , 2009 , 36, 599-615	7.8	76
77	A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. <i>Energy</i> , 2009 , 34, 1603-1616	7.9	312
76	A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis. <i>Expert Systems With Applications</i> , 2009 , 36, 6697-6707	7.8	135
75	An expert system towards solving ship auxiliary machinery troubleshooting: SHIPAMTSOLVER. <i>Expert Systems With Applications</i> , 2009 , 36, 7219-7227	7.8	21
74	Fuzzy capital rationing model. Journal of Computational and Applied Mathematics, 2009, 224, 628-645	2.4	16
73	FUZZY REAL OPTIONS VALUATION FOR OIL INVESTMENTS. <i>Technological and Economic Development of Economy</i> , 2009 , 15, 646-669	4.7	14
72	A New Artificial Immune System Algorithm for Multiobjective Fuzzy Flow Shop. <i>International Journal of Computational Intelligence Systems</i> , 2009 , 2, 236-247	3.4	9
71	Air Pollution Control Using Fuzzy Process Capability Indices in the Six-Sigma Approach. <i>Human and Ecological Risk Assessment (HERA)</i> , 2009 , 15, 689-713	4.9	28
70	An Alternative Ranking Approach and Its Usage in Multi-Criteria Decision-Making. <i>International Journal of Computational Intelligence Systems</i> , 2009 , 2, 219	3.4	9
69	A New Artificial Immune System Algorithm for Multiobjective Fuzzy Flow Shop Problems. <i>International Journal of Computational Intelligence Systems</i> , 2009 , 2, 236	3.4	10
68	A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop Scheduling Problem: A Real World Application. <i>Studies in Computational Intelligence</i> , 2009 , 169-189	0.8	6
67	Fuzzy Sets in Engineering Economic Decision-Making. Studies in Fuzziness and Soft Computing, 2008, 1-9	0.7	2
66	Fuzzy Multiple Objective Linear Programming. Springer Optimization and Its Applications, 2008, 325-337	0.4	3
65	Fuzzy Analytic Hierarchy Process and its Application. <i>Springer Optimization and Its Applications</i> , 2008 , 53-83	0.4	36
64	An Application Of Effective Genetic Algorithms For Solving Hybrid Flow Shop Scheduling Problems. <i>International Journal of Computational Intelligence Systems</i> , 2008 , 1, 134-147	3.4	54
63	An application of effective genetic algorithms for Solving Hybrid Flow Shop Scheduling Problems. International Journal of Computational Intelligence Systems, 2008, 1, 134	3.4	1

(2007-2008)

62	Fuzzy multiattribute evaluation of R&D projects using a real options valuation model. <i>International Journal of Intelligent Systems</i> , 2008 , 23, 1153-1176	8.4	21
61	STRUCTURING SHIP DESIGN PROJECT APPROVAL MECHANISM TOWARDS OPERATOR-SYSTEM INTERFACES VIA FUZZY AXIOMATIC DESIGN PRINCIPLES 2008 ,		3
60	Depreciation and Income Tax Considerations under Fuzziness. <i>Studies in Fuzziness and Soft Computing</i> , 2008 , 159-171	0.7	2
59	Effects of Inflation under Fuzziness and Some Applications. <i>Studies in Fuzziness and Soft Computing</i> , 2008 , 173-182	0.7	1
58	Investment Analyses Using Fuzzy Decision Trees. Studies in Fuzziness and Soft Computing, 2008, 231-242	2 0.7	2
57	Fuzzy Capital Rationing Models. Studies in Fuzziness and Soft Computing, 2008, 359-380	0.7	1
56	Fuzzy Equivalent Annual-Worth Analysis and Applications. <i>Studies in Fuzziness and Soft Computing</i> , 2008 , 71-81	0.7	3
55	Fuzzy Benefit/Cost Analysis and Applications. Studies in Fuzziness and Soft Computing, 2008, 129-143	0.7	4
54	Fuzzy Replacement Analysis. Studies in Fuzziness and Soft Computing, 2008, 145-157	0.7	3
53	Multi-Criteria Decision Making Methods and Fuzzy Sets. <i>Springer Optimization and Its Applications</i> , 2008 , 1-18	0.4	28
52	A SWOT-AHP Application Using Fuzzy Concept: E-Government in Turkey. <i>Springer Optimization and Its Applications</i> , 2008 , 85-117	0.4	23
51	Fuzzy Multi-Criteria Evaluation of Industrial Robotic Systems Using Topsis. <i>Springer Optimization and Its Applications</i> , 2008 , 159-186	0.4	5
50	Fuzzy Multi-Attribute Scoring Methods with Applications. <i>Springer Optimization and Its Applications</i> , 2008 , 187-208	0.4	4
49	Fuzzy Multi-Attribute Decision Making Using an Information Axiom-Based Approach. <i>Springer Optimization and Its Applications</i> , 2008 , 209-233	0.4	2
48	Hierarchical fuzzy TOPSIS model for selection among logistics information technologies. <i>Journal of Enterprise Information Management</i> , 2007 , 20, 143-168	4.4	97
47	Fuzzy multi-attribute cost B enefit analysis of e-services. <i>International Journal of Intelligent Systems</i> , 2007 , 22, 547-565	8.4	19
46	Evaluation of design requirements using fuzzy outranking methods. <i>International Journal of Intelligent Systems</i> , 2007 , 22, 1229-1250	8.4	13
45	An alternative approach to fuzzy control charts: Direct fuzzy approach. <i>Information Sciences</i> , 2007 , 177, 1463-1480	7.7	87

44	A two phase multi-attribute decision-making approach for new product introduction. <i>Information Sciences</i> , 2007 , 177, 1567-1582	7.7	105
43	Fuzzy multi-criteria evaluation of industrial robotic systems. <i>Computers and Industrial Engineering</i> , 2007 , 52, 414-433	6.4	133
42	Prioritization of human capital measurement indicators using fuzzy AHP. <i>Expert Systems With Applications</i> , 2007 , 32, 1100-1112	7.8	282
41	Prioritization of e-Government strategies using a SWOT-AHP analysis: the case of Turkey. <i>European Journal of Information Systems</i> , 2007 , 16, 284-298	6.4	80
40	LEARNING PROCESSES AND THEIR FUZZY CAPABILITY ANALYSES 2007 , 1312-1316		2
39	Project risk evaluation using a fuzzy analytic hierarchy process: An application to information technology projects. <i>International Journal of Intelligent Systems</i> , 2006 , 21, 559-584	8.4	75
38	Multi Attribute Performance Evaluation Using a Hierarchical Fuzzy TOPSIS Method 2006 , 537-572		8
37	Applications of Fuzzy Sets in Industrial Engineering: A Topical Classification 2006, 1-55		21
36	Design of Fuzzy Process Control Charts for Linguistic and Imprecise Data 2006 , 59-88		2
35	Development of fuzzy process control charts and fuzzy unnatural pattern analyses. <i>Computational Statistics and Data Analysis</i> , 2006 , 51, 434-451	1.6	68
34	A fuzzy optimization model for QFD planning process using analytic network approach. <i>European Journal of Operational Research</i> , 2006 , 171, 390-411	5.6	465
33	Applications of Fuzzy Capital Budgeting Techniques 2006 , 177-203		2
32	Teleworking adoption decision-making processes. <i>Journal of Enterprise Information Management</i> , 2005 , 18, 150-168	4.4	21
31	Fuzzy multi-attribute equipment selection based on information axiom. <i>Journal of Materials Processing Technology</i> , 2005 , 169, 337-345	5.3	156
30	Multi-attribute comparison of advanced manufacturing systems using fuzzy vs. crisp axiomatic design approach. <i>International Journal of Production Economics</i> , 2005 , 95, 415-424	9.3	162
29	Operating system selection using fuzzy replacement analysis and analytic hierarchy process. <i>International Journal of Production Economics</i> , 2005 , 97, 89-117	9.3	128
28	Fuzzy multi-attribute selection among transportation companies using axiomatic design and analytic hierarchy process. <i>Information Sciences</i> , 2005 , 170, 191-210	7.7	268
27	Malaysian women entrepreneurs: understanding the ICT usage behaviors and drivers. <i>Journal of Enterprise Information Management</i> , 2005 , 18, 721-739	4.4	42

(2000-2005)

26	Multi-attribute information technology project selection using fuzzy axiomatic design. <i>Journal of Enterprise Information Management</i> , 2005 , 18, 275-288	4.4	24
25	A fuzzy multi-criteria decision approach for software development strategy selection. <i>International Journal of General Systems</i> , 2004 , 33, 259-280	2.1	157
24	Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. <i>International Journal of Production Economics</i> , 2004 , 87, 171-184	9.3	494
23	Quantification of flexibility in advanced manufacturing systems using fuzzy concept. <i>International Journal of Production Economics</i> , 2004 , 89, 45-56	9.3	79
22	Determining the importance weights for the design requirements in the house of quality using the fuzzy analytic network approach. <i>International Journal of Intelligent Systems</i> , 2004 , 19, 443-461	8.4	120
21	Fuzzy sets approaches to statistical parametric and nonparametric tests. <i>International Journal of Intelligent Systems</i> , 2004 , 19, 1069-1087	8.4	23
20	Ecut fuzzy control charts for linguistic data. <i>International Journal of Intelligent Systems</i> , 2004 , 19, 1173-1	18945	76
19	Measuring flexibility of computer integrated manufacturing systems using fuzzy cash flow analysis. <i>Information Sciences</i> , 2004 , 168, 77-94	7.7	56
18	Optimization of Multilevel Investments Using Dynamic Programming Based on Fuzzy Cash Flows. <i>Fuzzy Optimization and Decision Making</i> , 2003 , 2, 101-122	5.1	6
17	Fuzzy group decision-making for facility location selection. <i>Information Sciences</i> , 2003 , 157, 135-153	7.7	333
16	Fuzzy group decision making for selection among computer integrated manufacturing systems. <i>Computers in Industry</i> , 2003 , 51, 13-29	11.6	191
15	Multi-criteria supplier selection using fuzzy AHP. <i>Logistics Information Management</i> , 2003 , 16, 382-394		743
14	Applying concepts of fuzzy cognitive mapping to model: The IT/IS investment evaluation process. <i>International Journal of Production Economics</i> , 2002 , 75, 199-211	9.3	57
13	Capital budgeting techniques using discounted fuzzy versus probabilistic cash flows. <i>Information Sciences</i> , 2002 , 142, 57-76	7.7	150
12	An application of fuzzy linear regression to the information technology in Turkey. <i>International Journal of Technology Management</i> , 2002 , 24, 330	1.2	7
11	FLEXIBILITY QUANTIFICATION IN COMPUTER INTEGRATED MANUFACTURING SYSTEMS BASED ON FUZZY CASH FLOW ANALYSIS 2002 ,		2
10	Capital Budgeting Techniques Using Discounted Fuzzy Cash Flows. <i>Studies in Fuzziness and Soft Computing</i> , 2001 , 375-396	0.7	10
9	Justification of manufacturing technologies using fuzzy benefit/cost ratio analysis. <i>International Journal of Production Economics</i> , 2000 , 66, 45-52	9.3	53

8	Fuzzy Future Value and Annual Cash Flow Analyses. Lecture Notes in Computer Science, 1999, 266-270	0.9	1
7	A Pythagorean cubic fuzzy methodology based on TOPSIS and TODIM methods and its application to software selection problem. <i>Soft Computing</i> ,1	3.5	1
6	Group Decision Making for Advanced Manufacturing Technology Selection Using the Choquet Integral	1115-1	134
5	A Literature Survey on the Usage of Fuzzy MCDM Methods for Digital Marketing1-19		
4	Hospital Location Selection Using Spherical Fuzzy TOPSIS		30
3	Present Worth Analysis Using Hesitant Fuzzy Sets		2
2	Quantification of Corporate Performance Using Fuzzy Analytic Network Process606-637		1
1	Soft Computing and Computational Intelligent Techniques in the Evaluation of Emerging Energy Techr	ologie	es 1:64-197