List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5593856/publications.pdf Version: 2024-02-01

PALLE FLOVE

#	Article	IF	CITATIONS
1	Epigenetic regulation of T cell development. International Reviews of Immunology, 2023, 42, 82-90.	1.5	7
2	NuRD complex recruitment to Thpok mediates CD4 ⁺ T cell lineage differentiation. Science Immunology, 2022, 7, .	5.6	11
3	THEMIS enhances the magnitude of normal and neuroinflammatory type 1 immune responses by promoting TCR-independent signals. Science Signaling, 2022, 15, .	1.6	3
4	New insights into TCR Î ² -selection. Trends in Immunology, 2021, 42, 735-750.	2.9	37
5	The histone demethylase Lsd1 regulates multiple repressive gene programs during T cell development. Journal of Experimental Medicine, 2021, 218, .	4.2	4
6	New Insights into Epigenetic Regulation of T Cell Differentiation. Cells, 2021, 10, 3459.	1.8	15
7	Editorial: Inhibitory Receptors and Pathways of Lymphocytes. Frontiers in Immunology, 2020, 11, 1552.	2.2	3
8	CD5 signalosome coordinates antagonist TCR signals to control the generation of Treg cells induced by foreign antigens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12969-12979.	3.3	15
9	Ldb1 is required for Lmo2 oncogene–induced thymocyte self-renewal and T-cell acute lymphoblastic leukemia. Blood, 2020, 135, 2252-2265.	0.6	7
10	CD5 dynamically calibrates basal NF-κB signaling in T cells during thymic development and peripheral activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14342-14353.	3.3	32
11	SOCS3 is a suppressor of γc cytokine signaling and constrains generation of murine Foxp3 ⁺ regulatory T cells. European Journal of Immunology, 2020, 50, 986-999.	1.6	6
12	HIRA, a DiGeorge Syndrome Candidate Gene, Confers Proper Chromatin Accessibility on HSCs and Supports All Stages of Hematopoiesis. Cell Reports, 2020, 30, 2136-2149.e4.	2.9	17
13	Notch and the pre-TCR coordinate thymocyte proliferation by induction of the SCF subunits Fbxl1 and Fbxl12. Nature Immunology, 2019, 20, 1381-1392.	7.0	26
14	Pax3 cooperates with Ldb1 to direct local chromosome architecture during myogenic lineage specification. Nature Communications, 2019, 10, 2316.	5.8	28
15	A TCR mechanotransduction signaling loop induces negative selection in the thymus. Nature Immunology, 2018, 19, 1379-1390.	7.0	112
16	Regulatory mechanisms in T cell receptor signalling. Nature Reviews Immunology, 2018, 18, 485-497.	10.6	371
17	THEMIS enhances TCR signaling and enables positive selection by selective inhibition of the phosphatase SHP-1. Nature Immunology, 2017, 18, 433-441.	7.0	71
18	Themis2 lowers the threshold for B cell activation during positive selection. Nature Immunology, 2017, 18, 205-213.	7.0	21

#	Article	IF	CITATIONS
19	THEMIS: Two Models, Different Thresholds. Trends in Immunology, 2017, 38, 622-632.	2.9	20
20	Themis1 enhances T cell receptor signaling during thymocyte development by promoting Vav1 activity and Grb2 stability. Science Signaling, 2016, 9, ra51.	1.6	29
21	The stage-dependent roles of Ldb1 and functional redundancy with Ldb2 in mammalian retinogenesis. Development (Cambridge), 2016, 143, 4182-4192.	1.2	29
22	Endogenous dendritic cells from the tumor microenvironment support T-ALL growth via IGF1R activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1016-25.	3.3	24
23	LEF-1 and TCF-1 orchestrate TFH differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nature Immunology, 2015, 16, 980-990.	7.0	272
24	CD5 Helps Aspiring Regulatory T Cells Ward Off Unwelcome Cytokine Advances. Immunity, 2015, 42, 395-396.	6.6	5
25	TCR ITAM multiplicity is required for the generation of follicular helper T-cells. Nature Communications, 2015, 6, 6982.	5.8	27
26	Lmo2's Oncogenic Function in T-Cell Leukemia Requires Ldb1. Blood, 2015, 126, 3663-3663.	0.6	0
27	<i>In vivo</i> functional mapping of the conserved protein domains within murine Themis1. Immunology and Cell Biology, 2014, 92, 721-728.	1.0	5
28	Ldb1 complexes: the new master regulators of erythroid gene transcription. Trends in Genetics, 2014, 30, 1-9.	2.9	105
29	A ThPOK-LRF transcriptional node maintains the integrity and effector potential of post-thymic CD4+ T cells. Nature Immunology, 2014, 15, 947-956.	7.0	65
30	LIM Domain Only-2 (LMO2) Induces T-Cell Leukemia by Two Distinct Pathways. PLoS ONE, 2014, 9, e85883.	1.1	46
31	Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood, 2013, 121, 4575-4585.	0.6	78
32	<i>Lmo2</i> Induces Hematopoietic Stem Cell-Like Features in T-Cell Progenitor Cells Prior to Leukemia. Stem Cells, 2013, 31, 882-894.	1.4	47
33	Interchangeability of Themis1 and Themis2 in Thymocyte Development Reveals Two Related Proteins with Conserved Molecular Function. Journal of Immunology, 2012, 189, 1154-1161.	0.4	31
34	Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease. Journal of Experimental Medicine, 2012, 209, 1781-1795.	4.2	49
35	Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells. Nature Immunology, 2011, 12, 129-136.	7.0	91
36	Signal integration and crosstalk during thymocyte migration and emigration. Nature Reviews Immunology, 2011, 11, 469-477.	10.6	188

#	Article	IF	CITATIONS
37	ITAM-mediated Signaling by the T-Cell Antigen Receptor. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002485-a002485.	2.3	152
38	A requirement for Lim domain binding protein 1 in erythropoiesis. Journal of Experimental Medicine, 2010, 207, 2543-2550.	4.2	41
39	Beyond αβ/γÎ′ lineage commitment: TCR signal strength regulates γδT cell maturation and effector fate. Seminars in Immunology, 2010, 22, 247-251.	2.7	18
40	Themis, a T cell–specific protein important for late thymocyte development. Nature Immunology, 2009, 10, 840-847.	7.0	125
41	Selective Thymus Settling Regulated by Cytokine and Chemokine Receptors. Journal of Immunology, 2007, 178, 2008-2017.	0.4	167
42	A retrospective on the requirements for $\hat{I}^{3}\hat{I}$ T-cell development. Immunological Reviews, 2007, 215, 8-14.	2.8	13
43	Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood, 2006, 108, 2531-2539.	0.6	175
44	Strength of signal: a fundamental mechanism for cell fate specification. Immunological Reviews, 2006, 209, 170-175.	2.8	40
45	Stoichiometry of the murine γδT cell receptor. Journal of Experimental Medicine, 2006, 203, 47-52.	4.2	38
46	Selective Expression of the 21-Kilodalton Tyrosine-Phosphorylated Form of TCR ζ Promotes the Emergence of T Cells with Autoreactive Potential. Journal of Immunology, 2005, 174, 6071-6079.	0.4	15
47	TCR Signal Strength Influences $\hat{I} \pm \hat{I}^2 / \hat{I}^3 \hat{I}$ Lineage Fate. Immunity, 2005, 22, 583-593.	6.6	238
48	An architectural perspective on signaling by the pre-, αβ and γδT cell receptors. Immunological Reviews, 2003, 191, 28-37.	2.8	64
49	Regulation of thymocyte development: only the meek survive. Current Opinion in Immunology, 2003, 15, 199-203.	2.4	22
50	Characterization of CCR9 Expression and CCL25/Thymus-Expressed Chemokine Responsiveness During T Cell Development: CD3highCD69+ Thymocytes and γÎTCR+ Thymocytes Preferentially Respond to CCL25. Journal of Immunology, 2002, 168, 134-142.	0.4	96
51	A LAT Mutation That Inhibits T Cell Development Yet Induces Lymphoproliferation. Science, 2002, 296, 2040-2043.	6.0	271
52	A Role for CCR9 in T Lymphocyte Development and Migration. Journal of Immunology, 2002, 168, 2811-2819.	0.4	296
53	A potential role for CD69 in thymocyte emigration. International Immunology, 2002, 14, 535-544.	1.8	130
54	Distinct Structure and Signaling Potential of the $\hat{I}^{3}\hat{I}$ TCR Complex. Immunity, 2002, 16, 827-838.	6.6	117

#	Article	IF	CITATIONS
55	Fine Tuning of TCR Signaling by CD5. Journal of Immunology, 2001, 166, 5464-5472.	0.4	242
56	Function of Cd3ε-Mediated Signals in T Cell Development. Journal of Experimental Medicine, 2000, 192, 913-920.	4.2	60
57	Critical Relationship Between TCR Signaling Potential and TCR Affinity During Thymocyte Selection. Journal of Immunology, 2000, 165, 3080-3087.	0.4	58
58	ITAM Multiplicity and Thymocyte Selection. Immunity, 2000, 12, 591-597.	6.6	74
59	Essential Role of LAT in T Cell Development. Immunity, 1999, 10, 323-332.	6.6	509
60	T Cell Development in Mice Lacking All T Cell Receptor ζ Family Members (ζ, Ε, and FcεRIγ). Journal of Experimental Medicine, 1998, 187, 1093-1101.	4.2	47
61	CD5 Expression Is Developmentally Regulated By T Cell Receptor (TCR) Signals and TCR Avidity. Journal of Experimental Medicine, 1998, 188, 2301-2311.	4.2	569
62	Role of the Multiple T Cell Receptor (TCR)-ζ Chain Signaling Motifs in Selection of the T Cell Repertoire. Journal of Experimental Medicine, 1997, 185, 893-900.	4.2	107
63	Defective lymphoid development in mice lacking expression of the common cytokine receptor Î ³ chain. Immunity, 1995, 2, 223-238.	6.6	993