
Cyrille Mathieu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5593609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A prospective observational study for justification, safety, and efficacy of a third dose of mRNA vaccine in patients receiving maintenance hemodialysis. Kidney International, 2022, 101, 390-402.	2.6	72
2	Predictive factors of a viral neutralizing humoral response after a third dose of COVID-19 mRNA vaccine. American Journal of Transplantation, 2022, 22, 1442-1450.	2.6	15
3	Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nature Immunology, 2021, 22, 25-31.	7.0	403
4	The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. Journal of Biological Chemistry, 2021, 296, 100111.	1.6	211
5	Single-chain variable fragment antibody constructs neutralize measles virus infection in vitro and in vivo. Cellular and Molecular Immunology, 2021, 18, 1835-1837.	4.8	3
6	Molecular Features of the Measles Virus Viral Fusion Complex That Favor Infection and Spread in the Brain. MBio, 2021, 12, e0079921.	1.8	24
7	Activation of cGAS/STING pathway upon paramyxovirus infection. IScience, 2021, 24, 102519.	1.9	25
8	Rapid and Flexible Platform To Assess Anti-SARS-CoV-2 Antibody Neutralization and Spike Protein-Specific Antivirals. MSphere, 2021, 6, e0057121.	1.3	2
9	Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation. Biomolecules, 2021, 11, 1324.	1.8	20
10	A Bioluminescent 3CLPro Activity Assay to Monitor SARS-CoV-2 Replication and Identify Inhibitors. Viruses, 2021, 13, 1814.	1.5	12
11	Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nature Communications, 2021, 12, 5809.	5.8	37
12	Highly Potent Host-Specific Small-Molecule Inhibitor of Paramyxovirus and Pneumovirus Replication with High Resistance Barrier. MBio, 2021, 12, e0262121.	1.8	5
13	Nipah virus W protein harnesses nuclear 14-3-3 to inhibit NF-κB-induced proinflammatory response. Communications Biology, 2021, 4, 1292.	2.0	9
14	High Pathogenicity of Nipah Virus from <i>Pteropus lylei</i> Fruit Bats, Cambodia. Emerging Infectious Diseases, 2020, 26, 104-113.	2.0	12
15	Measles Encephalitis: Towards New Therapeutics. Viruses, 2019, 11, 1017.	1.5	54
16	Type I Interferon Receptor Signaling Drives Selective Permissiveness of Astrocytes and Microglia to Measles Virus during Brain Infection. Journal of Virology, 2019, 93, .	1.5	22
17	Measles Virus Bearing Measles Inclusion Body Encephalitis-Derived Fusion Protein Is Pathogenic after Infection via the Respiratory Route. Journal of Virology, 2019, 93, .	1.5	24
18	Inhibiting Human Parainfluenza Virus Infection by Preactivating the Cell Entry Mechanism. MBio, 2019, 10, .	1.8	9

Cyrille Mathieu

#	Article	IF	CITATIONS
19	Analysis of a Subacute Sclerosing Panencephalitis Genotype B3 Virus from the 2009-2010 South African Measles Epidemic Shows That Hyperfusogenic F Proteins Contribute to Measles Virus Infection in the Brain. Journal of Virology, 2019, 93, .	1.5	25
20	Fusion Inhibitory Lipopeptides Engineered for Prophylaxis of Nipah Virus in Primates. Journal of Infectious Diseases, 2018, 218, 218-227.	1.9	45
21	Viral Entry Properties Required for Fitness in Humans Are Lost through Rapid Genomic Change during Viral Isolation. MBio, 2018, 9, .	1.8	27
22	Measles virus infection of human keratinocytes: Possible link between measles and atopic dermatitis. Journal of Dermatological Science, 2017, 86, 97-105.	1.0	15
23	<i>In Vivo</i> Efficacy of Measles Virus Fusion Protein-Derived Peptides Is Modulated by the Properties of Self-Assembly and Membrane Residence. Journal of Virology, 2017, 91, .	1.5	40
24	Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides. Scientific Reports, 2017, 7, 43610.	1.6	45
25	Organotypic Brain Cultures: A Framework for Studying CNS Infection by Neurotropic Viruses and Screening Antiviral Drugs. Bio-protocol, 2017, 7, e2605.	0.2	10
26	Intradermal immunisation using the TLR3-ligand Poly (I:C) as adjuvant induces mucosal antibody responses and protects against genital HSV-2 infection. Npj Vaccines, 2016, 1, 16010.	2.9	24
27	HSP90 Chaperoning in Addition to Phosphoprotein Required for Folding but Not for Supporting Enzymatic Activities of Measles and Nipah Virus L Polymerases. Journal of Virology, 2016, 90, 6642-6656.	1.5	49
28	Contraintes réglementaires des échanges de ressources biologiques à l'internationalÂ: quand la biodiversité s'invite là où on ne l'attend pas…. Virologie, 2016, 20, 73-74.	0.1	0
29	Heparan Sulfate-Dependent Enhancement of Henipavirus Infection. MBio, 2015, 6, e02427.	1.8	26
30	Henipavirus pathogenesis and antiviral approaches. Expert Review of Anti-Infective Therapy, 2015, 13, 343-354.	2.0	34
31	Measles Fusion Machinery Is Dysregulated in Neuropathogenic Variants. MBio, 2015, 6, .	1.8	45
32	Prevention of Measles Virus Infection by Intranasal Delivery of Fusion Inhibitor Peptides. Journal of Virology, 2015, 89, 1143-1155.	1.5	48
33	Fatal Measles Virus Infection Prevented by Brain-Penetrant Fusion Inhibitors. Journal of Virology, 2013, 87, 13785-13794.	1.5	58
34	Type I Interferon Signaling Protects Mice From Lethal Henipavirus Infection. Journal of Infectious Diseases, 2013, 207, 142-151.	1.9	62
35	Protection Against Henipavirus Infection by Use of Recombinant Adeno-Associated Virus–Vector Vaccines. Journal of Infectious Diseases, 2013, 207, 469-478.	1.9	72
36	Nonstructural Nipah Virus C Protein Regulates both the Early Host Proinflammatory Response and Viral Virulence. Journal of Virology, 2012, 86, 10766-10775.	1.5	57

Cyrille Mathieu

#	Article	IF	CITATIONS
37	Rapid Screening for Entry Inhibitors of Highly Pathogenic Viruses under Low-Level Biocontainment. PLoS ONE, 2012, 7, e30538.	1.1	19
38	Lethal Nipah Virus Infection Induces Rapid Overexpression of CXCL10. PLoS ONE, 2012, 7, e32157.	1.1	49
39	A General Strategy to Endow Natural Fusion-protein-Derived Peptides with Potent Antiviral Activity. PLoS ONE, 2012, 7, e36833.	1.1	67
40	Nipah Virus Uses Leukocytes for Efficient Dissemination within a Host. Journal of Virology, 2011, 85, 7863-7871.	1.5	86
41	Transcriptome Signature of Nipah Virus Infected Endothelial Cells. , 0, , .		1